Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home > Archive > v. 2, n. 3 (2015) > Nawar


Vol. 2, No. 3, p. 3-12 - Jun. 30, 2015


Role of free-living protozoa in the occurrence and survival of Vibrio cholerae O1 in aquatic ecosystem

Ferdous Nawar and M. Niamul Naser

Cholera disease caused by bacteria Vibrio cholerae O1 and O139. Both afflict 3-5 million and cause 100,000-120,000 deaths worldwide each year. Although from the previous study we have information on the association of cholera bacteria with various zooplankton but little is known about what kinds of relationship exists between cholera bacterium with protozoa though they prefer to live more or less at a similar ecological niche. In the present study the role of free-living fresh water protozoa's in the persistence of V. cholerae O1 was assessed. The in situ association of V. cholerae O1 with protozoa showed the association of V. cholerae O1 with the fresh water shelled amoeba, Arcella but in the case of ciliates and flagellates large numbers of bacteria were detected from food vacuoles. The result also showed that vibrios form biofilms in Arcella culturing media and survived up to two months but the bacterial density declined to < 10 cells/mL water within six days in ciliate and flagellate culturing media. Besides in M-PCR results wbe, ctxA, rstR2 genes were positive for Arcella culturing microcosm later for up to 55 days but after four days all of the genes were negative for flagellate and ciliate culturing microcosm water. It indicates that tested amoeba, Arcella spp help in the survival of V. cholerae O1 in nature but ciliates and flagellates can graze upon large number of planktonic vibrios and control the abundance of cholera bacteria.

Protozoa, Cholera, Ecology, Biofilm, Association.

Full text

Abd, H.; Weintraub, A.; Sandstrom, G. Interaction between Vibrio cholerae and Acanthamoeba castellanii. Microbial Ecology in Health and Disease, v. 16, p. 51-57, 2004.

Alam, M.; Hasan, N. A.; Sadique, A.; Bhuiyan, N. A.; Ahmed, K. U.; Nus-rin, S.; Nair, G. B.; Siddique, A. K.; Sack, R. B.; Sack, D. A.; Huq, A.; Colwell, R. R. Seasonal cholera caused by Vibrio cholerae serogroups O1 and O139 in the coastal aquatic environment of Bangladesh. Appl. Environ. Microbiol., v. 72, p. 4096-4104, 2006a.

Alam, M.; Sultana, M.; Nair, G. B.; Sack, R. B.; Sack, D. A.; Siddique, A. K.; Ali, A.; Huq, A.; Colwell, R. R. Toxigenic Vibrio cholerae in the aquatic environment of Math-Baria, Bangladesh. Appl. Environ. Microbiol., v. 72, p. 2849-2855, 2006b.

Alam, M.; Sultana, M.; Nair, G. B.; Sid-Dique, A. K.; Hasan, N. A.; Sack, R. B., Sack, D. A.; Ahmed, K. U.; Sadique, A.; Watanabe, H.; Grim, C. J.; Huq, A.; Colwell, R. R. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc. Natl. Acad. Sci. USA, v. 104, p. 17801-17806, 2007.

Allen, R. D.; Fok, A. K. Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidas pulse-chase studies. J. Cell. Sci., v. 45, p. 131-145, 1980.

Brayton, P. R.; Tamplin, M. L.; Huq, A.; Colwell, R. R. Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent - antibody direct viable count. Appl. Environ. Microbiol., v. 53, p. 2862-2865, 1987.

Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science, v. 274, p. 2025-2031, 1996.

Corliss, J. O. The ciliated protozoa. 2. ed. Oxford and New York: Pergamon Press, 1979.

Corliss, J. O. The need for the new looks of the taxonomy of protists. Rev. Soc. Mex. Hist., v. 45, p. 27-35, 1995.

Dunkerly, F. Encystations and reserve food formation in Tinema lineare. Trans. Roy. Soc. Edinb., v. 53, p. 297, 1923.

Emch, M.; Feldacker, C.; Islam, S. M.; Ali, M. Seasonality of cholera from 1974 to 2005: a review of global patterns. International Journal of Health Geographics, v. 7, 13 p., 2008. Available from: <>. Accessed in 12 Oct., 2014.

Faruque, S. M.; Naser, I. B.; Islam, M. J.; Faruque, A. S.; Ghosh, A. N. Seasonal epidemics of cholera inversely correlate with environmental cholera phages. Proc. Nat. Acad. Sci. USA, v. 102, p. 1702-1717, 2004.

Fenchel, T. Protozoan filtter feeding. Prog. Protistol., v. 1, p. 65-113, 1986.

Finlay, B. J.; Esteban, G. F. Freshwater protozoa: biodiversity and ecological function. Biodiver. Conserv., v. 7, p. 1163-1186, 1998.

Fok, A. K.; Lee, Y.; Allen, R. D. The correlation of digestive vacuoles pH and size with the digestive cycle in Paramecium caudatum. Journal of Protozoology, v. 29, n. 3, p. 409-414, 1982.

Hardin, G. Flocculation of bacteria by protozoa. Nature, v. 5, p. 94-104, 1943.

Hobbie, J. W. The state of the microbes: a summary of a symposium honoring Lawrence Pomeroy. Microb. Ecol., v. 28, p. 113-116, 1994.

Hoshino, K. Yamasaki, S.; Mukhopadhyay, A. K.; Chakraborty, S.; Basu, A.; Bhattacharya, S. K.; Nair, G. B.; Shimada, T.; Takeda, Y. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med. Microbiol., v. 20, n. 3, p. 201-207, 1998.

Islam, M. S., Drasar, B. S.; Sack, R. B. Probable role of blue-green algae in maintaining endemicity and seasonality of cholera in Bangladesh: a hypothesis. J. Diarrhoeal. Dis. Res., v. 12, p. 245-256, 1994.

Jahn, T. L.; Brown, M.; Winet, H. Secretory activity of oral groove of Paramecium. Journal of Protozoology, v. 8, p. 23, 1961.

Jepps, M. W. The Protozoa, Sarcodina. 1. ed. Edinburgh, London: Oliver and Boyd, 1956.

Kudo, R. R. Protozoology. 4. ed. Spring-field, Illinios: Charles C. Thomas, 1960.

Lamrabet, O.; Merhej, V.; Pontarotti, P.; Raoult, D.; Drancourt, M. The genealogic tree of mycobacteria reveals a long-standing sympatric life into free-living Protozoa. PLoS ONE, v. 7, 8 p., 2012. Available from: <>. Acessed in: 12 Oct., 2014.

Laskowski-Arce, M. A.; Orth, K. Acanthamoeba castellanii promotes the survival of Vibrio parahaemolyticus. Appl. Environ. Microbiol., v. 74, n. 23, p. 7183-7188, 2008.

McCarthy, S. A. Effects of temperature and salinity on survival of toxigenic Vibrio cholerae O1 in seawater. Microb. Ecol., v. 31, p. 167-175, 1996.

Michael, A. Acanthamoeba castellani promotes the survival of V. parahaemolyticus. Appl. Environ. Microbiol., v. 74, p. 7183-7108, 2008.

Miles, H. B. Soil protozoa and earthworm nutrition. Soil Science, v. 95, p. 407-409, 1963.

Nahar, S.; Sultana, M.; Naser, N. M.; Nair, B. G.; Watanabe, H. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Fronters in Microbiology, v 2, p. 120-125, 2011.

Nandi, B.; Nandy, R. K.; Mukhopadhyay, S.; Nair, G. B.; Shimada, T.; Ghose, A. C. Rapid method for species-specific identification of V. cholera using primers targeted to the gene of outer membrane protein OmpW. J. Clin. Microbiol., v. 38, p. 4145-4151, 2000.

Nishibe, Y.; Kawabata, Z.; Nakano, S. Grazing on Microcystis aeruginosa by the heterotrophic flagellate Colodictyon triciliatum in a hypertrophic pond. Aquat. Microb. Ecol., v. 29, p. 173-179, 2002.

Parry, J. D. Protozoan grazing of fresh water biofilms. Adv. Appl. Microbiol., v. 54, p. 167-196, 2004.

Parry, J. L. A functional biology of free-living Protozoa. 3. ed. London: The British Library Publishing Company, 1984.

Patel, M.; Isaacson, M. The effect of iron on the survival of Vibrio cholerae O1 in dechlorinated tap water. Transaction of Royal Society on Tropical Medicine and Hygiene, v. 88, p. 296-297, 1994.

Perthanler, J.; Šimek, K.; Sattler, B.; Schwarzenbacher, A.; Bobkova, J.; Psenner, R. Short term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. Journal of Plankton Research, v. 18, p. 443-462, 1996.

Roberts, M. S.; Cohan, F. M. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution, v. 49, p. 1081-1094, 1995.

Sack, D. A.; Sack, R. B.; Nair, G. B.; Siddique, A. K. Cholera. The Lancet, v. 363, p. 223-233, 2004.

Salah, S.; Abd, H.; Hedenström, I.; Saeed, A.; Sandström, G. Detection of V. cholerae and Acanthamoeba species from same natural water samples collected from different cholera endemic area in Sudan. BMC Research Notes, v. 4, 4 p., 2011. Available from: <>. Acessed in: 12 Oct., 2014.

Sanchez, J.; Holmgren, J. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr. Opin. Immunol., v. 19, p. 388-398, 2005.

Sherr, E. B.; Sherr, B. F. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol., v. 28, p. 223-235, 1987.

Sigee, D. C.; Glenn, R.; Andrews, M. J.; Bellinger, E. G.; Butler, R. D.; Epton, H. A. S.; Hendry, R. D. Biological control of Cyanobacteria: principles and possibilities. Hydrobiologia, v. 395/396, p. 161-172, 1999.

Thorap, H. J.; Covich, P. A. Ecology and classification of North American freshwater invertebrates. 2. ed. New York: Academic Press, 2001.

Wagner, M.; Heinz, E.; Kolarov, I. An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. Environ. Microbiol., v. 9, p. 1604-1609, 2006.

Wetzel, R. G.; Likens, G. E. Limnological analyses. 3. ed. New York: Springer-Verlag, 2000.