Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 6, no. 14 (2019) Bchir


Vol. 6, No. 14, p. 615-628 - Dec. 31, 2019


Estimation and comparison of reference evapotranspiration using different methods to determine olive trees irrigation schedule in different bioclimatic stages of Tunisia

Amani Bchir , Raoul Lemeur , Fethi Ben Mariem , Najet Boukherissa , Wafa Gariani , Haifa Sbaii , Ali Ben Dhiab , Samia Ben Mansour Gueddes and Mohamed Braham

The study of olive trees water requirements allows a better water management by using more accurate methods including maximum parameters of the continuum soil-plant-atmosphere. The Penman-Monteith equations is consideredas the most rational approach and the most reliable for calculating evapotranspiration. Only this approach necessarily requires an important number of climate parameters. The use of other equations, less complicated and using less climate parameters may be a reliable and efficient alternative. This experimental study was carried out on two cultivars cv. "Meski" and cv. "Chemlali" conducted in the intensive system in different bioclimatic stages (Subhumid, Semi-Arid and Arid) in Tunisia. This work aims to estimate olive trees water needs using evapotranspiration calculation in three different bioclimatic stages. For that, we compared the Penman-Monteith formula with Blaney-Criddel, Hargreaves-Temperature, Hargreaves-Radiation and Priestley-Taylor formulas to estimate reference evapotranspiration (ET0). Results show that ET0 values calculated by Priestley-Taylor and Blaney-Criddel formulas were more or less similar to Penman-Monteith. The ET0 values found by Hargreaves-Temperature and Hargreaves-Radiation were twice the values calculated by Penman-Monteith formula. We also found good correlations between the reference evapotranspiration calculated by the Penman-Monteith equation and that calculated by Priestley-Taylor and Blaney-Criddel equations in all bioclimatic stages (R2 more than 0.85, p < 1%). The ET0 sensitivity analysis has shown that solar radiation and air temperature (energetic climatic parameters) have the dominant effect on the ET0 at the level of the different climatic regions. Accordingly, in the case of lack of some climatic parameters and in sub-humid, semi-arid and arid conditions and for the different phenological stages of the olive tree, we can use Priestley-Taylor and/or Blaney-Criddle formulas to estimate water needs.

Reference evapotranspiration; Olive; Water requirement; Bio-climatic stages.


Full text

Alexandris, S.; Stricevic, R.; Petkovic, S. Comparative analysis of reference evapotranspiration from the surface of rainfed grass in Central Serbia, calculated by six empirical methods against the Penman Monteith formula. European Water, v. 21, no. 22, p. 17-28, 2008.

Alkaeed, O.; Flores, C.; Jinno, K.; Tsutsumi, A. Comparison of several reference evapotranspiration methods for Itoshima Peninsula Area, Fukuoka, Japan. Memoirs of the Faculty of Engineering, Kyushu University, v. 66, p. 1-14, 2006.

Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome Italy: Food and Agriculture Organaization, 1998.

Baldy, C. Agro-météorologie et développement des régions arides et semi-arides. Paris: Institut National de la Recherche Agronomique, 1998. p. 63-79.

Bchir, A. Etude de l'évapotranspiration et des besoins en eau de l'Olivier de table (cv. meski) conduit en intensif. Chott-Mariem: Institut Supérieur Agronomique de Chott-Mariem, 2010. (Mastère en Agriculture Durable).

Bchir, A. Etude de l'évapotranspiration et de la transpiration pour l'estimation des besoins en eau de l'olivier (Olea europaea L.) conduit en intensif dans différents étages bioclimatiques. Chott-Mariem: Institut Supérieur Agronomique de Chott-Mariem, 2015. (Thèse de doctorat en Sciences Agronomiques).

Blaney, H. F.; Criddle, W. D. Determining water requirements in irrigated areas from climatologically and irrigation data. Washington: USDA, 1950. (SCS TP 96 48).

Bois, B.; Pieri, P.; Van Leeuwen, C.; Gaudillère, J. P. Sensitivity analysis of Penman-Monteith evapotranspiration formula and comparison of empirical methods in viticulture soil water balance. Proceeding of the XIV international GESCO Viticulture Congress, Geisenheim, Germany, p. 187-193, 2005.

Bois, B.; Pieri, P.; Van Leeuwen, C.; Wald, L.; Huard, F.; Gaudillere, J.-P.; Saur, E. Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step. Agricultural and Forest Meteorology, v. 148, p. 619-630, 2007.

Bouhlassa, S.; Paré, S. Évapotranspiration de référence dans la région aride de Tafilalet au sud-est du Maroc. African Journal of Environmental Assessment and Management, v. 11, p. 1-16, 2006.

DGPA - Direction Générale de la Production Agricole. Ministère de l'Agriculture de Pèche et de Ressources Hydrauliques. Statistique 2015. 2015.

Elsayed-Farag, S. Irrigation scheduling from plant-based measurements in hedgerow olive orchards. Seville: University of Seville, 2014.

Gao, Z.; He, J.; Dong, K.; Bian, X.; Li, X. Sensitivity study of reference crop evapotranspiration during growing season in the West Liao River Basin, China. Theoretical and Applied Climatology, v. 124, p. 865ľ881, 2016.

Gong, L. B.; Xu, C.Y.; Chen, D. L.; Halldin, S.; Chen, Y. D. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) Basin. Journal of Hydrology, v. 329, no. 3/4, p. 620-629, 2006.

Goyal, R. K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India). Agricultural Water Management, v. 69, no. 1, p. 1-11, 2004.

Hargreaves, G. H.; Allen, R. G. History and evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, v. 129, p. 53-63, 2003.

Hedger, M.; Cacouris, J. Separate streams? Adapting water resources management to climate change. Tearfund, 2008.

Jackson, D.; Paglietti, L.; Ribeiro, M.; Karray, B. Tunisie, analyse de la filière oléicole. Rome: Organisation des Nations Unies pour l'Alimentation et l'Agriculture, 2015.

Karray, B. Enjeux de la filière oléicole en Tunisie et axes de développement dans le nouveau contexte politique. Montpellier: CIHEAM, 2012. (Les notes d'analyse du CIHEAM, 66). Available from: <>. Accessed on: Apr. 23, 2019.

Khoshravesh, M.; Sefidkouhi, M. A. G.; Valipour, M. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Applied Water Science, v. 7, p. 1911-1922, 2017.

Levina, E. Domestic policy frameworks for adaptation to climate change in the water sector. Part II: Non-Annex 1 Countries lessons learned from Mexico, India, Argentina and Zimbabwe. Paris: Organisation de Coopération et de Développement Économique, 2006.

Lovelli, S.; Perniola, M.; Arcieri, M.; Rivelli, A. R.; Tommaso, T. D. Water use assessment in muskmelon by the Penman-Monteith "one-step&quaot; approach. Agricultural Water Management, v. 95, p. 1153-1160, 2008.

Martinez, C. J.; Thepadia, M. Estimating reference evapotranspiration with minimum data in Florida. Journal of Irrigation and Drainage Engineering, v. 136, p. 494-501, 2010.

Masmoudi-Charfi, C.; Habaieb, H. Rainfall distribution functions for irrigation scheduling: Calculation procedures following site of olive (Olea europaea L.) cultivation and growing periods. American Journal of Plant Sciences, v. 5, p. 2094-2133, 2014.

Paredes, P.; Rodrigues, G. C. Necessidades de água para a rega de milho em Portugal Continental considerando condiçotilde;es de seca. In: Pereira, L. S.; Mexia, J. T.; Pires, C. A. L. (Eds.). Gestão do risco em secas: métodos, tecnologias e desafíos. Lisboa: Colibri e CEER, 2010. p. 301-320.

Pastor, M.; Hidalog, J.; Vega, V.; Castro, J. Irrigation des cultures oléicoles dans la région de LOMA (Province de Jaèn). Olivae, v. 17, p. 39-49, 1998.

Pereira, A. R.; Green, S. R.; Villa Nova, N. A. Sap flow, leaf area, net radiation and the Priestley-Taylor formula for irrigated orchards and isolated trees. Agricultural Water Management, v. 92, p. 48-52, 2007.

Popova, Z.; Kercheva, M.; Pereira, L. S. Validation of the FAO methodology for computing ET0 with missing climatic data. Application to South Bulgaria. Irrigation and Drainage, v. 55, p. 201-215, 2006.

Priestley, C. H. B.; Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, v. 100, p. 81-92, 1972.<0081:OTAOSH>2.3.CO;2

Razieia, T.; Pereira, L. S. Reference estimation of ET0 with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, v. 121, p. 1-18, 2013.

Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Cambridge: Cambridge University Press, 2013.

Sumner, D.; Jacobs, J. M. Utility of Penman-Monteith, Priestley-Taylor, reference evapoČtranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology, v. 308, no. 1/4, p. 81-104, 2005.

Tabari, H.; Hosseinzadeh Talaee, P. Sensitivity of evapotranspiration to climatic change in different climates. Global and Planetary Change, v. 115, p. 16-23, 2014.

Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of some reference evapotranspiration equations for California. Journal of Irrigation and Drainage Engineering, v. 131, p. 73-84, 2005.

Todorovic, M.; Karic, B.; Pereira, L. S. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. Journal of Hydrology, v. 481, p. 166-176, 2013.

Valipour, M. Analysis of potential evapotranspiration using limited weather data. Applied Water Science, v. 7, p. 187-197, 2017.

Wrachien, D. D.; Mambretti, S. Irrigation and drainage systems in flood-prone areas: The role of mathematical models. Austin Journal of Irrigation, v. 1, no. 1, 1002, 2015. Available from: <>. Accessed on: Apr. 23, 2019.

Xiaoying L.; Erda L. Performance of the Priestley-Taylor equation in the semiarid climate of North China. Agricultural Water Management, v. 71, no. 1, p. 1-17, 2005.

Xu, C. Y.; Gong, L.B.; Jiang, T.; Chen, D.; Singh, V. P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, v. 327, p. 81-93, 2006.

Yang, G. Y.; Wang, Z. S.; Wang, H.; Jia, Y. W. Potential evapotranspiration evolution rule and its sensitivity analysis in Haihe River Basin. Advances in Water Science, v. 20, no. 3, p. 409-415, 2009.

Yannopoulos, S. I.; Lyberatos, G.; Theodossiou, N.; Li, W.; Valipour, M.; Tamburrino, A.; Angelakis, A. N. Evolution of water lifting devices (pumps) over the centuries worldwide. Water, v. 7, no. 9, p. 5031-5060, 2015.

ISSN 2358-2731