Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 6, no. 14 (2019) Deepthi

 

Vol. 6, No. 14, p. 577-589 - Dec. 31, 2019

 

Applications of endophytic-fungal-isolates from velamen root of wild orchids in floriculture



Azhanthanilkunnathil S. Deepthi and Joseph G. Ray

Abstract
The velamen roots are quite extensively growing and profusely branched organ of adaptation in epiphytic orchids. The endophytic-fungi in such roots are believed to have growth-promoting influence, especially on the roots itself. However, an application of the same in the cultivation of the ornamental orchids is not yet sufficiently tried. The present report deals with the growth promoting effects of endophytic fungi of the velamen roots of a wild epiphytic orchid Acampe praemorsa on an ornamental orchid, Dendrobium sp. The five endophytic fungal species, Trichoderma asperellum, Trichoderma harzianum, Trichoderma atroviride, Endomelanconiopsis endophytica and Diaporthe eucalyptorum isolated from the velamen roots of the epiphytic orchid, A. praemorsa were found to be potent producers of the hormone indole-3-acetic-acid (IAA). The endophytic fungi were identified by morphological and molecular methods. The nucleotide sequences of the identified strains were deposited in the GenBank. The growth-promoting influence of them was tested on an ornamental orchid Dendrobium sp. Experimental assessment of nutrient uptake, chlorophyll content, and biomass of the leaves of the treated plants after 45 days of inoculation confirmed the growth promoting effects. The amount of nitrogen, phosphorus and potassium in the treated plants showed a significant increase from the control. The fungus E. endophytica showed a significant increase in the chlorophyll content in the leaves of treated plants, T. asperellum and D. eucalyptorum showed a significant increase in the fresh-weight of treated plants, whereas T. asperellum and E. endophytica significantly increased the dry weight of leaves in treated plants. Overall, the experiment proved that the endophytic fungal isolates from the wild orchid A. praemorsa synthesize bioactive compounds including IAA that can promote growth in ornamental orchids such as Dendrobium sp. Thus the endophytic fungal isolates from wild orchids are proved significant in orchid floriculture.


Keywords
Endophytic-fungi; Epiphyte; Growth promotion; IAA; Orchid; Velamen roots.

DOI
10.21472/bjbs.061409

Full text
PDF

References
AOAC - Association of Official Agricultural Chemists. Official and tentative methods of analysis of the Association of Official Agricultural Chemists. Washington, DC: AOAC, 1978.

Arnon, D. I. Copper enzymes in iolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, v. 24, p. 1-15, 1949. https://doi.org/10.1104/pp.24.1.1

Bayman, P.; Lebrón, L. L.; Tremblay, R. L.; Lodge, D. J. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytologist, v. 135, p. 143-149, 1997.

Cameron, D. D.; Leake, J. R.; Read, D. J. Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytologist, v. 171, p. 405-416, 2006.

Chen, L.; Yang, X., Raze; W., Li, J., Liu Y.; Qiu, M.; Zhang, F.; Shen, Q. Trichoderma harzianum SQR-T037 rapidly degrades alllochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology, v. 89, no. 5, p. 1653-1663, 2011. https://doi.org/10.1007/s00253-010-2948-x

Chen, X. M.; Dong, H. L.; Hu, K. X.; Sun, Z. R.; Chen, J.; Guo, S. X. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. Journal of Plant Growth Regulation, v. 29, p. 328-337, 2010. https://doi.org/10.1007/s00344-010-9139-y

Colla, G.; Rouphael, Y.; Bonini, P.; Cardarelli, M. Coating seeds with endophytic fungi enhances growth, uptake, yield and grain quality of winter wheat. Interational Journal of Plant Production, v. 9, p. 171-189, 2015.

Contreras-Cornej, H. A.; Macias-Rodriguez, L.; Cortes-Penagos, C.; Lopez-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, v. 149, p. 1579-1592, 2009. https://doi.org/10.1104/pp.108.130369

Correll, D. S. Native orchids of North America. Massachusetts: Chronica Botanica Company, 1950.

Deepthi, A. S.; Ray, J. G. Endophytic diversity of hanging velamen roots in the epiphytic orchid Acampe praemorsa. Plant Ecology & Diversity, v. 11, p. 649-661, 2018. https://doi.org/10.1080/17550874.2019.1610911

El-Deeb, B.; Bazaid, S.; Gherbawy, Y.; Elhariry, H. Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. Journal of Plant Interactions, v. 7, p. 248-253, 2012. https://doi.org/10.1080/17429145.2011.637161

Guo, B.; Wang, Y.; Sun, X.; Tang, K. Bioactive natural products from endophytes: A review. Applied Biochemistry and Microbiology, v. 44, p. 136-142, 2008. https://doi.org/10.1134/S0003683808020026

Hágsater, E.; Dumont, V. IUCN/SSC Orchid specialist group. Orchids-status survey and conservation action plan. UK: IUCN, 1996.

Hamayun, M.; Khan, S. A.; Khan, A. L.; Rahman, G.; Sohn, E.; Shan, A. A; Kim, S.; Joo, G.; Lee, I. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. Journal of Microbiology and Biotechnology, v. 19, p. 1244-1249, 2009.

Hamayun, M.; Khan, S. A.; Khan, A. L.; Rahman, G.; Kim, Y.; Iqbal, I.; Hussain, J.; Sohn, E.; Lee. I. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia, v. 102, p. 989-995, 2010. https://doi.org/10.3852/09-261

Hasanloo, T.; Kowsari, M.; Naraghi, S. M.; Bagheri, O. Study of different Trichoderma strains on growth characteristics and silymarin accumulation of milk thistle plant. Journal of Plant Interactions, v. 5, p. 45-49, 2010. https://doi.org/10.1080/17429140903189166

Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology, v. 158, p. 17-25, 2012. https://doi.org/10.1099/mic.0.052274-0

Hou, X. Q.; Guo, S. X. Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. Journal of Integrative Plant Biology, v. 51, p. 374381, 2009. https://doi.org/10.1111/j.1744-7909.2008.00777.x

Jackson, M. L. Soil chemical analysis. 2. ed. New Delhi: Prentice Hall of India, 1973.

Kamaruzzaman, M.; Rahman, M. M.; Islam, M. S.; Ahmad, M. U. Efficacy of four selective Trichoderma isolates as plant growth promoters in two peanut varieties. International Journal of Biological Research, v. 4, p. 152-156, 2016. https://doi.org/10.14419/ijbr.v4i2.6468

Kedar, A.; Rathod, D.; Yadav, A.; Agarkar, G.; Rai , M. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience, v. 6, p. 132-139, 2014.

Khan, A. L.; Hamayun, M.; Kang, S.-M.; Kang, S.-M.; Kim, Y.-H.; Jung, H.-Y.; Lee, J.-H; Lee, I.-J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiology, v. 12, Article 3, 2012. https://doi.org/10.1186/1471-2180-12-3

Khan, A. R.; Ullah, I.; Waqas, M.; Shahad, R.; Hong, S.; Park, G.; Jung, B. K.; Lee, I.; Shin, J. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World Journal of Microbiology and Biotechnology, v. 31, p. 1461-1466, 2015. https://doi.org/10.1007/s11274-015-1888-0

Khan, S. A.; Hamayun, M.; Khan, A. L.; Lee, I.; Shinwari, Z.; Kim, J. Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastal sand dunes of Korea. Pakistan Jounal of Botany, v. 44, p. 1453-1460, 2012.

Kim, K.; Yim, W.; Trivedi. P. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant and Soil, v. 327, p. 429-440, 2010. https://doi.org/10.1007/s11104-009-0072-4

Kohout, P.; Tesitelova, T.; Roy, M.; Vohnik, K.; Jersakova, J. A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology, v. 6, p. 50-64, 2013. https://doi.org/10.1016/j.funeco.2012.08.005

Mohamed, H.; Joseph, M. Isolation, identification and frequency studies of foliar endophytic fungi from Dendrobium sp. and Oncidium sp. International Journal of Recent Science Research, v. 7, p. 14580-14583, 2016.

Muthukumrasamy, R.; Revathi, G.; Loganathan , P. Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant and Soil, v. 243, p. 91-102, 2002. https://doi.org/10.1023/A:1019963928947

Novak, S. D.; Luna, L. J.; Gamage, R. N. Role of auxin in orchid development. Plant Signaling Behavior, v. 9, e972277, 2014. https://doi.org/10.4161/psb.32169

Porras-Alfaro, A.; Bayman, P. Mycorrhizal fungi of Vanilla: Diversity, specificity and effects on seed germination and plant growth. Mycologia, v. 99, p. 510-525, 2007.

Schulz, B.; Wanke, U.; Draeger, S.; Aust, H. Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycological Research, v. 97, p. 1447-1450, 1993. https://doi.org/10.1016/S0953-7562(09)80215-3

Senthilmurugan, G.; Sekar, S. Plant growth promoter and biocontrol mechanism of endophytic fungi Botrytis sp. Brazilian Journal of Biological Sciences, v. 2, no. 4, p. 221-233, 2015.

Shah, S.; Shrestha, R.; Maharjan, S.; Selosse, M.; Pant, B. Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants, v. 8, p. 5-15, 2019. https://doi.org/10.3390/plants8010005

Sharma, P.; Patel, A. N.; Saini, M. K.; Deep, S. Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). Journal of Agricultural Science, v. 4, p. 65-73, 2012. https://doi.org/10.5539/jas.v4n8p65

Shivanna, M. B.; Meera, M. S.; Kageyamma, K.; Hyakumachi, M. Growth promotion abiity of zoysiagrass rhizosphere fungi in consecutive plantings of wheat and soybean. Mycoscience, v. 37, p. 163-168, 1996. https://doi.org/10.1007/BF02461341

Tsavkelova, E. A.; Bömke, C.; Netrusov, A. I.; Weiner, J.; Tudzynski, B. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genetics and Biology, v. 45, p. 1393-1403, 2008. https://doi.org/10.1016/j.fgb.2008.07.011

Tsavkelova, E. A.; Cherdyntseva, T. A.; Klimova, S. Y.; Botina, S. G.; Netrusov, A. I. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology, v. 188, p. 655664, 2007. https://doi.org/10.1007/s00203-007-0286-x

Tsavkelova, E. A.; Lobakova, E. S.; Kolomeitseva, G. L. Localization of associative Cyanobacteria on the roots of epiphytic orchids. Microbiology, v. 72, p. 99-104, 2003. https://doi.org/10.1023/A:1022286225013

Wang, Y.; Gao, B. L.; Li, X. X.; Zhang, Z. B.; Yan, R. M.; Yang, H. L.; Zhu, D. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis. Fungal Biology, v. 119, no. 11, p. 1032-1045, 2015. https://doi.org/10.1016/j.funbio.2015.07.009

Waqas, M.; Khan, A. L.; Kamran, M.; Hamayun, M.; Kang, S.; Kim,Y.; Lee, I. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, v. 17, p. 10754-10773, 2012. https://doi.org/10.3390/molecules170910754

Xing, Y.; Chen, J.; Cui, J.; Chen, S.; Guo, S. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Current Microbiology, v. 62, p. 1218-1224, 2011. https://doi.org/10.1007/s00284-010-9848-2

Yang, S.; Zhang, X.; Cao, Z.; Zhao, K.; Wang, S.; Chen, M.; Hu, X. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnology, v. 7, p. 611-620, 2014. https://doi.org/10.1111/1751-7915.12148

Yedidia, I.; Srivastva, A. K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, v. 35, p. 235-242, 2001. https://doi.org/10.1023/A:1011990013955

Yi, Q.; Xin, F.; Ye, X. Effects of increasing phosphate and potassium fertilizers on the control of Cymbidium anthracnose. Journal of Tropical and Subtropical Botany, v. 11, p. 157-160, 2003.

Zhao, X. L.; Yang, J. Z.; Liu, S.; Chen, C.; Zhu, H.; Cao, J. The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets. World Journal of Microbiology and Biotechnology, v. 30, p. 1993-2003, 2014. https://doi.org/10.1007/s11274-014-1623-2

Zhou, Z.; Zhang, C.; Zhou, W.; Li, W.; Chu, L.; Yan, J.; Li, H. Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of Plant Interaction, v. 9, p. 585-591, 2014. https://doi.org/10.1080/17429145.2013.873959

Zotz, G.; Hietz, P. The physiological ecology of vascular epiphytes: Current knowledge, open questions. Journal of Experimental Botany, v. 52, p. 2067-2078, 2001. https://doi.org/10.1093/jexbot/52.364.2067

Zotz, G.; Winkler, U. Aerial roots of epiphytic orchids: The velamen radicum and its role in water and nutrient uptake. Oecologia, v. 171, p. 733-741, 2013. https://doi.org/10.1007/s00442-012-2575-6


ISSN 2358-2731