Vol. 6, No. 14, p. 577-589 - Dec. 31, 2019
Applications of endophytic-fungal-isolates from velamen root of wild orchids in floriculture
Azhanthanilkunnathil S. Deepthi


Abstract
The velamen roots are quite extensively growing and profusely branched organ of adaptation in epiphytic orchids. The endophytic-fungi in such roots are believed to have growth-promoting influence, especially on the roots itself. However, an application of the same in the cultivation of the ornamental orchids is not yet sufficiently tried. The present report deals with the growth promoting effects of endophytic fungi of the velamen roots of a wild epiphytic orchid Acampe praemorsa on an ornamental orchid, Dendrobium sp. The five endophytic fungal species, Trichoderma asperellum, Trichoderma harzianum, Trichoderma atroviride, Endomelanconiopsis endophytica and Diaporthe eucalyptorum isolated from the velamen roots of the epiphytic orchid, A. praemorsa were found to be potent producers of the hormone indole-3-acetic-acid (IAA). The endophytic fungi were identified by morphological and molecular methods. The nucleotide sequences of the identified strains were deposited in the GenBank. The growth-promoting influence of them was tested on an ornamental orchid Dendrobium sp. Experimental assessment of nutrient uptake, chlorophyll content, and biomass of the leaves of the treated plants after 45 days of inoculation confirmed the growth promoting effects. The amount of nitrogen, phosphorus and potassium in the treated plants showed a significant increase from the control. The fungus E. endophytica showed a significant increase in the chlorophyll content in the leaves of treated plants, T. asperellum and D. eucalyptorum showed a significant increase in the fresh-weight of treated plants, whereas T. asperellum and E. endophytica significantly increased the dry weight of leaves in treated plants. Overall, the experiment proved that the endophytic fungal isolates from the wild orchid A. praemorsa synthesize bioactive compounds including IAA that can promote growth in ornamental orchids such as Dendrobium sp. Thus the endophytic fungal isolates from wild orchids are proved significant in orchid floriculture.
Keywords
Endophytic-fungi; Epiphyte; Growth promotion; IAA; Orchid; Velamen roots.
DOI
10.21472/bjbs.061409
Full text
PDF
References
AOAC - Association of Official Agricultural Chemists. Official and tentative methods of analysis of the Association of
Official Agricultural Chemists. Washington, DC: AOAC, 1978.
Arnon, D. I. Copper enzymes in iolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology,
v. 24, p. 1-15, 1949. https://doi.org/10.1104/pp.24.1.1
Bayman, P.; Lebrón, L. L.; Tremblay, R. L.; Lodge, D. J. Variation in endophytic fungi from roots and leaves of
Lepanthes (Orchidaceae). New Phytologist, v. 135, p. 143-149, 1997.
Cameron, D. D.; Leake, J. R.; Read, D. J. Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen
transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytologist, v. 171, p. 405-416, 2006.
Chen, L.; Yang, X., Raze; W., Li, J., Liu Y.; Qiu, M.; Zhang, F.; Shen, Q. Trichoderma harzianum SQR-T037 rapidly
degrades alllochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology,
v. 89, no. 5, p. 1653-1663, 2011. https://doi.org/10.1007/s00253-010-2948-x
Chen, X. M.; Dong, H. L.; Hu, K. X.; Sun, Z. R.; Chen, J.; Guo, S. X. Diversity and antimicrobial and plant-growth-promoting
activities of endophytic fungi in Dendrobium loddigesii Rolfe. Journal of Plant Growth Regulation, v. 29,
p. 328-337, 2010. https://doi.org/10.1007/s00344-010-9139-y
Colla, G.; Rouphael, Y.; Bonini, P.; Cardarelli, M. Coating seeds with endophytic fungi enhances growth, uptake, yield
and grain quality of winter wheat. Interational Journal of Plant Production, v. 9, p. 171-189, 2015.
Contreras-Cornej, H. A.; Macias-Rodriguez, L.; Cortes-Penagos, C.; Lopez-Bucio, J. Trichoderma virens, a plant beneficial
fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.
Plant Physiology, v. 149, p. 1579-1592, 2009. https://doi.org/10.1104/pp.108.130369
Correll, D. S. Native orchids of North America. Massachusetts: Chronica Botanica Company, 1950.
Deepthi, A. S.; Ray, J. G. Endophytic diversity of hanging velamen roots in the epiphytic orchid Acampe praemorsa. Plant
Ecology & Diversity, v. 11, p. 649-661, 2018. https://doi.org/10.1080/17550874.2019.1610911
El-Deeb, B.; Bazaid, S.; Gherbawy, Y.; Elhariry, H. Characterization of endophytic bacteria associated with rose plant
(Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. Journal of Plant
Interactions, v. 7, p. 248-253, 2012. https://doi.org/10.1080/17429145.2011.637161
Guo, B.; Wang, Y.; Sun, X.; Tang, K. Bioactive natural products from endophytes: A review. Applied Biochemistry and
Microbiology, v. 44, p. 136-142, 2008. https://doi.org/10.1134/S0003683808020026
Hágsater, E.; Dumont, V. IUCN/SSC Orchid specialist group. Orchids-status survey and conservation action
plan. UK: IUCN, 1996.
Hamayun, M.; Khan, S. A.; Khan, A. L.; Rahman, G.; Sohn, E.; Shan, A. A; Kim, S.; Joo, G.; Lee, I. Phoma herbarum
as a new gibberellin-producing and plant growth-promoting fungus. Journal of Microbiology and Biotechnology,
v. 19, p. 1244-1249, 2009.
Hamayun, M.; Khan, S. A.; Khan, A. L.; Rahman, G.; Kim, Y.; Iqbal, I.; Hussain, J.; Sohn, E.; Lee. I. Gibberellin production
and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.).
Mycologia, v. 102, p. 989-995, 2010. https://doi.org/10.3852/09-261
Hasanloo, T.; Kowsari, M.; Naraghi, S. M.; Bagheri, O. Study of different Trichoderma strains on growth characteristics
and silymarin accumulation of milk thistle plant. Journal of Plant Interactions, v. 5, p. 45-49, 2010. https://doi.org/10.1080/17429140903189166
Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology,
v. 158, p. 17-25, 2012. https://doi.org/10.1099/mic.0.052274-0
Hou, X. Q.; Guo, S. X. Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile
seedlings. Journal of Integrative Plant Biology, v. 51, p. 374–381, 2009. https://doi.org/10.1111/j.1744-7909.2008.00777.x
Jackson, M. L. Soil chemical analysis. 2. ed. New Delhi: Prentice Hall of India, 1973.
Kamaruzzaman, M.; Rahman, M. M.; Islam, M. S.; Ahmad, M. U. Efficacy of four selective Trichoderma isolates as plant growth
promoters in two peanut varieties. International Journal of Biological Research, v. 4, p. 152-156, 2016. https://doi.org/10.14419/ijbr.v4i2.6468
Kedar, A.; Rathod, D.; Yadav, A.; Agarkar, G.; Rai , M. Endophytic Phoma sp. isolated from medicinal plants promote the
growth of Zea mays. Nusantara Bioscience, v. 6, p. 132-139, 2014.
Khan, A. L.; Hamayun, M.; Kang, S.-M.; Kang, S.-M.; Kim, Y.-H.; Jung, H.-Y.; Lee, J.-H; Lee, I.-J. Endophytic fungal association
via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus
LHL10. BMC Microbiology, v. 12, Article 3, 2012. https://doi.org/10.1186/1471-2180-12-3
Khan, A. R.; Ullah, I.; Waqas, M.; Shahad, R.; Hong, S.; Park, G.; Jung, B. K.; Lee, I.; Shin, J. Plant growth-promoting potential
of endophytic fungi isolated from Solanum nigrum leaves. World Journal of Microbiology and Biotechnology, v. 31,
p. 1461-1466, 2015. https://doi.org/10.1007/s11274-015-1888-0
Khan, S. A.; Hamayun, M.; Khan, A. L.; Lee, I.; Shinwari, Z.; Kim, J. Isolation of plant growth promoting endophytic fungi from
dicots inhabiting coastal sand dunes of Korea. Pakistan Jounal of Botany, v. 44, p. 1453-1460, 2012.
Kim, K.; Yim, W.; Trivedi. P. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae
strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant and Soil, v. 327, p. 429-440, 2010.
https://doi.org/10.1007/s11104-009-0072-4
Kohout, P.; Tesitelova, T.; Roy, M.; Vohnik, K.; Jersakova, J. A diverse fungal community associated with Pseudorchis albida
(Orchidaceae) roots. Fungal Ecology, v. 6, p. 50-64, 2013. https://doi.org/10.1016/j.funeco.2012.08.005
Mohamed, H.; Joseph, M. Isolation, identification and frequency studies of foliar endophytic fungi from Dendrobium sp. and
Oncidium sp. International Journal of Recent Science Research, v. 7, p. 14580-14583, 2016.
Muthukumrasamy, R.; Revathi, G.; Loganathan , P. Effect of inorganic N on the population, in vitro colonization and morphology
of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant and Soil, v. 243, p. 91-102, 2002.
https://doi.org/10.1023/A:1019963928947
Novak, S. D.; Luna, L. J.; Gamage, R. N. Role of auxin in orchid development. Plant Signaling Behavior, v. 9, e972277, 2014.
https://doi.org/10.4161/psb.32169
Porras-Alfaro, A.; Bayman, P. Mycorrhizal fungi of Vanilla: Diversity, specificity and effects on seed germination and
plant growth. Mycologia, v. 99, p. 510-525, 2007.
Schulz, B.; Wanke, U.; Draeger, S.; Aust, H. Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization
methods. Mycological Research, v. 97, p. 1447-1450, 1993. https://doi.org/10.1016/S0953-7562(09)80215-3
Senthilmurugan, G.; Sekar, S. Plant growth promoter and biocontrol mechanism of endophytic fungi Botrytis sp.
Brazilian Journal of Biological Sciences, v. 2, no. 4, p. 221-233, 2015.
Shah, S.; Shrestha, R.; Maharjan, S.; Selosse, M.; Pant, B. Isolation and characterization of plant growth-promoting endophytic
fungi from the roots of Dendrobium moniliforme. Plants, v. 8, p. 5-15, 2019. https://doi.org/10.3390/plants8010005
Sharma, P.; Patel, A. N.; Saini, M. K.; Deep, S. Field demonstration of Trichoderma harzianum as a plant growth promoter
in wheat (Triticum aestivum L). Journal of Agricultural Science, v. 4, p. 65-73, 2012. https://doi.org/10.5539/jas.v4n8p65
Shivanna, M. B.; Meera, M. S.; Kageyamma, K.; Hyakumachi, M. Growth promotion abiity of zoysiagrass rhizosphere fungi in
consecutive plantings of wheat and soybean. Mycoscience, v. 37, p. 163-168, 1996. https://doi.org/10.1007/BF02461341
Tsavkelova, E. A.; Bömke, C.; Netrusov, A. I.; Weiner, J.; Tudzynski, B. Production of gibberellic acids by an
orchid-associated Fusarium proliferatum strain. Fungal Genetics and Biology, v. 45, p. 1393-1403, 2008.
https://doi.org/10.1016/j.fgb.2008.07.011
Tsavkelova, E. A.; Cherdyntseva, T. A.; Klimova, S. Y.; Botina, S. G.; Netrusov, A. I. Orchid-associated bacteria
produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous
auxin. Archives of Microbiology, v. 188, p. 655–664, 2007. https://doi.org/10.1007/s00203-007-0286-x
Tsavkelova, E. A.; Lobakova, E. S.; Kolomeitseva, G. L. Localization of associative Cyanobacteria on the roots of
epiphytic orchids. Microbiology, v. 72, p. 99-104, 2003. https://doi.org/10.1023/A:1022286225013
Wang, Y.; Gao, B. L.; Li, X. X.; Zhang, Z. B.; Yan, R. M.; Yang, H. L.; Zhu, D. Phylogenetic diversity of culturable
endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and
their antagonistic activity analysis. Fungal Biology, v. 119, no. 11, p. 1032-1045, 2015. https://doi.org/10.1016/j.funbio.2015.07.009
Waqas, M.; Khan, A. L.; Kamran, M.; Hamayun, M.; Kang, S.; Kim,Y.; Lee, I. Endophytic fungi produce gibberellins and
indoleacetic acid and promotes host-plant growth during stress. Molecules, v. 17, p. 10754-10773, 2012.
https://doi.org/10.3390/molecules170910754
Xing, Y.; Chen, J.; Cui, J.; Chen, S.; Guo, S. Antimicrobial activity and biodiversity of endophytic fungi in
Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Current Microbiology,
v. 62, p. 1218-1224, 2011. https://doi.org/10.1007/s00284-010-9848-2
Yang, S.; Zhang, X.; Cao, Z.; Zhao, K.; Wang, S.; Chen, M.; Hu, X. Growth-promoting Sphingomonas paucimobilis
ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation.
Microbial Biotechnology, v. 7, p. 611-620, 2014. https://doi.org/10.1111/1751-7915.12148
Yedidia, I.; Srivastva, A. K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement
concentrations and increased growth of cucumber plants. Plant and Soil, v. 35, p. 235-242, 2001. https://doi.org/10.1023/A:1011990013955
Yi, Q.; Xin, F.; Ye, X. Effects of increasing phosphate and potassium fertilizers on the control of Cymbidium
anthracnose. Journal of Tropical and Subtropical Botany, v. 11, p. 157-160, 2003.
Zhao, X. L.; Yang, J. Z.; Liu, S.; Chen, C.; Zhu, H.; Cao, J. The colonization patterns of different fungi on
roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient
uptake of orchid plantlets. World Journal of Microbiology and Biotechnology, v. 30, p. 1993-2003, 2014.
https://doi.org/10.1007/s11274-014-1623-2
Zhou, Z.; Zhang, C.; Zhou, W.; Li, W.; Chu, L.; Yan, J.; Li, H. Diversity and plant growth-promoting ability
of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of
Plant Interaction, v. 9, p. 585-591, 2014. https://doi.org/10.1080/17429145.2013.873959
Zotz, G.; Hietz, P. The physiological ecology of vascular epiphytes: Current knowledge, open questions.
Journal of Experimental Botany, v. 52, p. 2067-2078, 2001. https://doi.org/10.1093/jexbot/52.364.2067
Zotz, G.; Winkler, U. Aerial roots of epiphytic orchids: The velamen radicum and its role in water and
nutrient uptake. Oecologia, v. 171, p. 733-741, 2013. https://doi.org/10.1007/s00442-012-2575-6
ISSN 2358-2731