Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 6, no. 14 (2019) Dall'Igna


Vol. 6, No. 14, p. 505-513 - Dec. 31, 2019


The effect of conocarpan on susceptibility of Candida albicans to phagocytosis and digestion by macrophages

Dhébora Mozena Dall'Igna , Ana Angélica Steil , Rosi Zanoni da Silva , Valdir Cechinel Filho , Alexandre Bella-Cruz

Piper solmsianum C. DC. compounds exhibit several properties, including antimicrobial activity. The aim of the present study was to investigate whether conocarpan alters Candida albicans growth or killing of the yeast by macrophages. Conocarpan showed strong activity against the yeast with minimal inhibitory concentration (MIC) of 20 µg/mL and minimal fungicidal concentration (MFC) of 30 µg/mL. Mice peritoneal cells (macrophages) were cultured for 24 and 48 hours in supplemented RPMI 1640 medium. Cellular activation was assessed by determining MTT reduction and nitric oxide production. Standardized tests were conducted to select the optimal parameters for the subsequent killing test. Results showed that conocarpan exhibited antifungal activity and that C. albicans cultivated in the presence of the compound had greater susceptibility to death by macrophages. These findings suggest that conocarpan may have potential as an antimicrobial agent for C. albicans infections, promoting macrophagic immune support by altering growth of the yeast.

Macrophage; Conocarpan; Candida albicans; Phagocytosis; Piper solmsianum.


Full text

Amulic, B.; Cazalet, C.; Hayes, G. L., Metzler, K. D.; Zychlinsky, A. Neutrophil function: From mechanisms to disease. Annual Review of Immunology, v. 30, p. 459-489, 2012.

Baumgartner, L.; Sosa, S.; Atanasov, A. G.; Bodensieck, A.; Fakhrudin, N.; Bauer, J.; Favero, G. D.; Ponti, C.; Heiss, E. H.; Schwaiger, S.; Ladurner, A.; Widowitz, U.; Loggia, R. D.; Rollinger, J. M.; Werz, O.; Bauer, R.; Dirsch, V. M.; Tubaro, A.; Stuppner, H. Lignan derivatives from Krameria lappacea roots inhibit acute inflammation in vivo and pro-inflammatory mediators in vitro. Journal of Natural Products, v. 74, no. 8, p. 1779-1786, 2011.

Bedard, K.; Krause, K.-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews, v. 87, no. 1, p. 245-313, 2007.

Campos, M. P.; Cechinel Filho, V.; Silva, R. Z.; Yunes, R. A.; Zacchino, S.; Juarez, S.; Bella Cruz, R. C.; Bella Cruz, A. Evaluation of antifungal activity of Piper solmsianum C. DC. var. solmsianum (Piperaceae). Biological and Pharmaceutical Bulletin, v. 28, no. 8, p. 1527-1530, 2005.

Cheng, S.-C.; Joosten, L. A. B.; Kullberg, B.-J.; Netea, M. G. Interplay between Candida albicans and the mammalian innate host defense. Infection and Immunity, v. 80, no. 4, p. 1304-1313, 2012.

Colombo, A. L.; Nucci, M.; Park, B. J.; Nouér, S. A.; Arthington-Skaggs, B.; Da Matta, D. A.; Warnock, D.; Morgan, J. Epidemiology of candidemia in Brazil: A nationwide sentinel surveillance of candidemia in eleven medical centers. Journal of Clinical Microbiology, v. 44, no. 8, p. 2816-2823, 2006.

Cruz, A. H., Mendonça, R. Z.; Petricevich, V. L. Crotalus durissus terrificus venom interferes with morphological, functional and biochemical changes in murine macrophage. Mediators of Inflammation, v. 6, p. 349-359, 2005.

Espinel-Ingroff, A.; Dawson, K.; Pfaller, M.; Anaissie, E.; Breslin, B.; Dixon, D.; Fothergill, A.; Paetznick, V.; Peter, J.; Rinaldi, M.; Walsh, T. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrobial Agents and Chemotherapy, v. 39, no. 2, p. 314-319, 1995.

Felk, A.; Kretschmar, M.; Albrecht, A.; Schaller, M.; Beinhauer, S.; Nichterlein, T.; Sanglard, D.; Korting, H. C.; Schäfer, W.; Hube, B. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infection and Immunity, v. 70, no. 7, p. 3689-3700, 2002.

Filler, S. G.; Sheppard, D. C. Fungal invasion of normally non-phagocytic host cells. PLoS Pathogens, v. 2, no. 12, 2006.

Freixa, B.; Vila, R.; Ferro, E. A.; Adzet, T.; Cañigueral, S. Antifungal principles from Piper fulvescens. Planta Medica, v. 67, no. 9, p. 873-875, 2001.

Hamada, E.; Nishida, T.; Uchiyama, Y.; Nakamura, J.; Isahara, K.; Kazuo, H.; Huang, T. P.; Momoi, T.; Ito, T.; Matsuda, H. Activation of Kupffer cells and caspase-3 involved in rat hepatocyte apoptosis induced by endotoxin. Journal of Hepatology, v. 30, no. 5, p. 807-818, 1999.

Horn, D. L.; Neofytos, D.; Anaissie, E. J.; Fishman, J. A.; Steinbach, W. J.; Olyaei, A. J.; Marr, K. A.; Pfaller, M. A.; Chang, C.-H.; Webster, K. M. Epidemiology and outcomes of candidemia in 2019 patients: Data from the prospective antifungal therapy alliance registry. Clinical Infectious Diseases, v. 48, no. 12, p. 1695-1703, 2009.

Kato, M. J.; Furlan, M. Chemistry and evolution of Piperaceae. Pure and Applied Chemistry, v. 79, no. 4, p.529-538, 2007.

Knowles, R. G.; Moncada, S. Nitric oxide synthases in mammals. Biochemical Journal, v. 298, no. 2, p. 249-258, 1994.

Lago, J. H. G.; Ramos, C. S.; Casanova, D. C. C.; Morandim, A. A.; Bergamo, D. C. B.; Cavalheiro, A. J.; Bolzani, V. S.; Furlan, M.; Guimarães, E. F.; Young, M. C. M.; Kato, M. J. Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. Journal of Natural Products, v. 67, no. 11, p. 1783-1788, 2004.

Miranda, K. M.; Espey, M. G.; Wink, D. A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, v. 5, no. 1, p.62-71, 2001.

Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Applications to proliferation and cytotoxicity assays. Journal of Immunological Methods, v. 65, no. 1/2, p. 55-63, 1983.

National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Fourth Informational Supplement. Approved Standard M27-S4. National Committee for Clinical Laboratory Standards, Ghannoum, M.A.: NCCLS, 2012.

Netea, M. G.; Maródi, L. Innate immune mechanisms for recognition and uptake of Candida species. Trends in Immunology, v. 31, no. 9, p. 346-353, 2010.

Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O. D.; Prasad, A. K.; Wengel, J.; Olsen, C. E.; Boll, P. M. Phytochemistry of the genus Piper. Phytochemistry, v. 46, no. 4, p. 597-673, 1997.

Pessini, G. L.; Dias Filho, B. P.; Nakamura, C. V.; Cortez, D. A. G. Antifungal activity of the extracts and neolignans from Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck. Journal of the Brazilian Chemical Society, v. 16, no. 6a, p. 1130-1133, 2005.

Rao, V. S.; Paiva, L. A.; Souza, M. F.; Campos, A. R; Ribeiro, R. A.; Brito, G. A.; Teixeira, M. J.; Silveira, E. R. Ternatin, an anti-inflammatory flavonoid, inhibits thioglycolate-elicited rat peritoneal neutrophil accumulation and LPS-activated nitric oxide production in murine macrophages. Planta Medica, v. 69, no. 9. p.851-853, 2003.

Steil, A. A. Inflamação induzida por imunocomplexos no peritôneo e pulmão: papel do fator ativador de plaquetas, eicosanóides e óxido nítrico. São Paulo: Universidade de São Paulo, 1996. (Thesis).

Stuehr, D. J.; Nathan, C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. Journal of Experimental Medicine, v. 169, no. 5, p. 1543-1555, 1989.

Terreaux, C.; Gupta, M. P.; Hostettmann, K. Antifungal benzoic acid derivatives from Piper dilatatum. Phytochemistry, v. 49, no. 2, p. 461-464, 2010.

Xu, Y.; Jagannath, C., Liu, X. D.; Sharafkhaneh, A.; Kolodziejska, K. E.; Eissa, N. T. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity, v. 27, no. 1, p.135-144, 2007.

ISSN 2358-2731