Vol. 6, No. 13, p. 453-465 - Aug. 31, 2019
Arbuscular mycorrhizal association and dependency determined the pioneer plant community, diversity structure and plant cover in two river bank under same climate
Somdatta Ghosh



Abstract
Early colonization of plants in an area is influenced mostly by climatic, edaphic and phytogeographic factors. As arbuscular mycorrhizae (AM) was associated with early invasion of land plants on earth, AM may have some role in defining the first seral community in any land. Two riverbanks were selected to study their pioneer plant community structure with species composition and diversity, soil characters and arbuscular mycorrhizal association; and correlations among these factors. Species composition, diversity and richness indices, active AM association of early colonizing plant species, soil texture, moisture, pH and E.C in two river banks differed. Similarity index for plant species between the two communities was poor. Diversity and richness indices were high in K site while evenness was high in R site. AM colonization and spore density correlated highly with plant cover and frequency in both riverbanks. Soil moisture showed a strong negative impact on mycorrhization, soil organic carbon showed little. Soil pH showed varied correlation in different sites. Early colonizing plants in R site with silt-loam soil with high moisture level are found poorly mycotrophic or nonmycotrophic; though plant cover correlated highly with mycotrophy in both sites. Plants in sandy soil of K site are highly mycotrophic and with high arbuscular and vesicular colonizations. The distribution of frequency in R site is highly deviated from Raunkiuer’s frequency class; in K site it is rather stable. The soil condition is only key factor to determine plant composition and plant-mycorrhizal relations influencing colonization of early seral community.
Keywords
AM spore density; Diversity index; Frequency; Similarity index; Mycorrhizal colonization.
DOI
10.21472/bjbs.061313
Full text
PDF
References
Antibus, R. K.; Lesica, P. C. Effects of soil parent material on mycorrhizal infection of Alpine plants. In: Molina,
R. (Ed.). NAOCM 85, Sixth North American Conference on Mycorrhiza. Cornvalis: Forest Research Laboratory, 1985.
Augé, R. M.; Toler, H. D.; Saxton, A. M. Mycorrhizal stimulation of leaf gas exchange in relation to root
colonization, shoot size, leaf phosphorus and nitrogen: A quantitative analysis of the literature using meta-regression
front. Frontiers in Plant Science, v. 7, 2016. https://doi.org/10.3389/fpls.2016.01084
Ayres, R. L.; Gange, A. C.; Aplin, D. M. Interactions between arbuscular mycorrhizal fungi and intraspecific competition
affect size, and size inequality of Plantago lanceolata L. Journal of Ecology, v. 94, no. 2, p. 285-294,
2006. https://doi.org/10.1111/j.1365-2745.2006.01103.x
Bedini, S.; Pellegrino, E.; Avio, L.; Pellegrino, S.; Bazoffi, P.; Argese, E.; Giovannetti, M. Changes in soil aggregation
and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae
and Glomus intraradices. Soil Biology and Biochemistry, v. 41, no. 7, p. 1491-1496, 2009. https://doi.org/10.1016/j.soilbio.2009.04.005
Berendse, F. Competition between plant-populations with differentrooting depths. 2. Pot experiments. Oecologia, v. 48,
p. 334-341, 1981. https://doi.org/10.1007/BF00346491
Bethlenfalvay, G. J.; Brown, M. S.; Ames, R. N.; Thomas, R. S. Effects of drought on host and endophyte development in
mycorrhizal soyabeans in relation to water use and phosphate uptake. Physiologia Plantarum, v. 72, no. 3, p. 565-571,
1988. https://doi.org/10.1111/j.1399-3054.1988.tb09166.x
Bouyoucos, G. J. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, v. 54,
no. 5, p. 464-465, 1962. https://doi.org/10.2134/agronj1962.00021962005400050028x
Brady, N. C. (Ed.). The nature and properties of soils. 10. ed. New Delhi: Prentice Hall, 2002.
Busby, R. R.; Gebhart, D. L.; Stromberger, M. E.; Meiman, P. J.; Paschk, M. W. Early seral plant species' interactions
with an arbuscular mycorrhizal fungi community are highly variable. Applied Soil Ecology, v. 48, no. 3, p. 257-262,
2011. https://doi.org/10.1016/ j.apsoil.2011.04.014
Collins, C. D.; Foster, B. L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology,
v. 90, no. 9, p. 2567-2576, 2009. https://doi.org/10.1890/08-1560.1
Cooke, M. A.; Widden, P.; O'Halloran, I. Development of vesicular arbuscular mycorrhiza in sugar maple (
Davies, E. A.; Young, J. L.; Linderman, R. G. Soil lime level (pH) and VA-mycorrhizal fungal hyphae and structural stability
of soil. Australian Journal of Soil Research, v. 9, p. 729-743, 1983.
Fitter, A. H.; Gilligan, C.; Hollingworth A.; Kleczkowski, A.; Twyman, R. M. Pitchford, J. W. Biodiversity and ecosystem function
in soil. Functional Ecology, v. 19, no. 3, p. 369-377, 2005. https://doi.org/10.1111/j.0269-8463.2005.00969.x
Gange, A. C.; Brown, V. K.; Farmer, L. M. A test of mycorrhizal benefit in an early successional plant coumnity. New Phytologist,
v. 115, no. 1, p. 85-91, 1990. https://doi.org/10.1111/j.1469-8137.1990.tb00925.x
Gerdemann, J. W.; Nicolson, T. H. Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting.
Transactions of the British Mycological Society, v. 46, no. 2, p. 235-244, 1963. https://doi.org/10.1016/S0007-1536(63)80079-0
Ghosh, S.; Verma, N. K. A preliminary report on VA mycorrhizal status of some common weeds, trees and aquatic plants of South West
Bengal. Science and Culture, v. 68, no. 5/6, p. 155-157, 2000.
Ghosh, S.; Verma, N. K. Growth and mycorrhizal dependency of Acacia mangium Willd inoculated with three vesicular arbuscular
mycorrhizal fungi in lateritic soil. New Forests, 31:75, 2006. https://doi.org/10.1007/s11056-004-4763-7
Goicoechea, N.; Baslam, M.; Erice, G.; Irigoyen, J. J. Increased photosynthetic acclimation in alfalfa associated with arbuscular
mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2. Journal of Plant Physiology, v. 171,
no. 18, p. 1774-1781, 2014. https://doi.org/10.1016/j.jplph.2014.07.027
Gosling, P.; Mead, A.; Proctor M.; Hammond, J. P.; Bending G. D. Contrasting arbuscular mycorrhizal communities colonizing different
host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist, v. 198, p. 546-556, 2013.
https://doi.org/10.1111/nph.12169
Howeler, R. H.; Sieverding, E.; Saif, S. Practical aspect of mycorrhizal technology in some tropical crops and pastures. Plant and
Soil, v. 100, no. 1/3, p. 249-283, 1987. https://doi.org/10.1007/BF02370945
Jaccard, P. The distribution of the flora in the alpine zone. New Phytologist, v. 11, no. 2, p. 37-50, 1912. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
Jackson, M. L. (Ed.). Soil chemical analyses. New Delhi: Prentice-Hall, 1973.
Jha, A.; Kumar, A.; Saxena, R. A.; Kamalvanshi, M.; Chakravarty, N. Effect of arbuscular mycorrhizal inoculations on seedling growth
and biomass productivity of two bamboo species. Indian Jornal of Microbiology, v. 52, no. 2, p. 281-285, 2012. https://doi.org/10.1007/s12088-011-0213-3
Jin, Y.; Liu, H.; Luo, D.; Yu, N.; Dong, W.; Wang, C.; Zhang, X.; Dai, H.; Yang, J.; Wang, E. DELLA proteins are common components of
symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communication, v. 7, Article number, p. 12433, 2016.
https://doi.org/10.1038/ncomms12433
Johnson, D.; Vandenkoornhuyse, P. J.; Leake, R.; Gilbert, L. A.; Booth, R. E.; Grime, J. P.; Young, J. P. W.; Read, D. J. Plant communities
affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, v. 161, p. 503-515,
2004. https://doi.org/10.1046/j.1469-8137.2003.00938.x
Johnson, N. C.; Rowland, D. L.; Corkidi, L.; Egerton, L.; Warburton, M.; Allen, E. B. Nitrogen enrichment alters mycorrhizal allocation at
five mesic to semiarid grasslands. Ecology, v. 84, no. 7, p. 1895-1908, 2003. https://doi.org/10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
Johnson, N. C.; Tilman, D.; Wedin, D. Plant and soil controls on mycorrhizal fungal communities. Ecology, v. 73, no. 6, p. 2034-2042,
1992. https://doi.org/10.2307/1941453
Klironomos, J. N.; McCune, J.; Hart, M.; Nevill, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity
and productivity. Ecology Letters, v. 3, no. 2, p. 137-141, 2000. https://doi.org/10.1046/j.1461-0248.2000.00131.x
Koide, R. T.; Dickie, I. A. Effects of mycorrhizal fungi on plant populations. Plant and Soil, v. 244, no. 1/2, p. 307-317, 2002.
https://doi.org/10.1023/A:1020204004844
Liu, A.; Plenchette, C.; Hamel, C. Soil nutrient and water providers: How arbuscular mycorrhizal mycelia support plant performance in a
resource-limited world. In: Hamel, C.; Plenchette, C. (Eds.). Mycorrhizae in crop production. Binghamton, NY: Haworth Food &
Agricultural Products Press, 2007. p. 37-66.
Maestre, F. T.; Bautista, S.; Cortina, J. Positive, negative, and net effects in grass-shrub interactions in Mediterranean semiarid
grasslands. Ecology, v. 84, p. 3186-3197, 2003. https://doi.org/10.1890/02-0635
Margalef, R. (Ed.). Perspectives in Ecological Theory. Chicago: University of Chicago Press, 1968.
Marschner, H.; Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159:89, 1994. https://doi.org/10.1007/BF00000098
Marschner, P.; Timonen, S. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in
the rhizosphere. Applied Soil Ecology, v. 28, no. 1, p. 23-36, 2005. https://doi.org/10.1016/j.apsoil.2004.06.007
Mayerhofer, M. S.; Kernaghan, G.; Harper, K. A. The effects of fungal root endophytes on plant growth. Mycorrhiza, v. 23, no. 2,
p. 119-128, 2013. https://doi.org/10.1007/s00572-012-0456-9
Mosse, B. Advances in the study of vesicular-arbuscular mycirrhiza. Annual Review of Phytopathology, v. 11, p. 171-196, 1973.
https://doi.org/10.1146/annurev.py.11.090173.001131
Mukerji, K. G.; Mandeep, K. Mycorrhizal relationship of wetlands and rivers associated plants. In: Majumdar, S. K.; Miller, E. W.;
Brenner, F. J. (Eds.). Ecology of wetlands and associated systems. Easton: Pennsylvania Academy of Science, 1998. p. 240-257.
Nelson, C. E.; Safir, G. R. Increased drought resistance in onion plants by mycorrhizal infection. Planta, v. 154, no. 5,
p. 407-413, 1982. https://doi.org/10.1007/BF01267807
Pasqualini, D.; Uhlmann, A.; Stürmer, S. L. Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration
of woody plant species from the Atlantic rain forest in South Brazil. Forest Ecology and Management, v. 145, no. 1/3,
p. 148-155, 2007. https://doi.org/10.1016/j.foreco.2007.04.024
Phillips, J. M.; Hayman, D. S. Improved procedure for clearing roots and staining parasitic vesicular-arbuscular mycorrhizal fungi
for rapid assessment of infection. Transactions of the British Mycological Society, v. 55, no. 1, p. 158-161, IN16-IN18, 1970.
https://doi.org/10.1016/S0007-1536(70)80110-3
Piotrowski, J. S.; Denich, T.; Klironomos, J. N.; Graham, J. M.; Rillig, M. C. The effects of arbuscular mycorrhizas on soil aggregation
depend on the interaction between plant and fungal species. New Phytologist, v. 164, no. 2, p. 365-373, 2004.
https://doi.org/10.1111/j.1469-8137.2004.01181.x
Plenchette, C. A.; Fortin, A.; Forlan, N. Growth response of several plant species to mycorrhiza in a soil of moderate P-fertility.
I. Mycorrhizae aunder field conditions. Plant and Soil, v. 70, no. 2, p. 199-209, 1983. https://doi.org/10.1007/BF02374780
Propster, J. R.; Johnson, N. C. Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti.
Plant and Soil, v. 388, no. 1/2, p. 21-34, 2015. https://doi.org/10.1007/s11104-014-2369-1
Ragupati, S.; Mahadevan, A. Distribution of vericular arbuscular mycorrhiza in the plants and rhizosphere soils of the tropical
plains Tamilnadu, India. Mycorrhiza, v. 3, no. 3, p. 123-136, 1993. https://doi.org/10.1007/BF00208920
Raunkiauer, C. (Ed.). The life forms of plants and statistical plant Geography. Oxford: Calerndon Press, 1934.
Rillig, M. C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters, v. 7, no. 8, p. 740-754,
2004. https://doi.org/10.1111/j.1461-0248.2004.00620.x
Sanders, I. R.; Koide, R. T. Nutrient acquisition and community structure in co-occuring mycortrophic and non-mycotrophic
old-field annuals. Functional Ecology, v. 8, no. 1, p. 77-84, 1994. https://doi.org/10.2307/2390114
Schenck, N. C.; Perez, V. (Eds.). Mannual for identification of VA mycorrhizal fungi. Gainsville, USA: Synergistic, 1987.
Shannon, C. E. A mathematical theory of communication. The Bell System Technical Journal, v. 27, p. 379-423, 1948.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Siqueira, J. O.; Carneiro, M. A. C.; Curi, N.; Rosado, S. C. S.; Davide, A. C. Mycorrhizal colonization and mycotrophic growth of
native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management, v. 107,
no. 1/3, p. 241-252, 1998. https://doi.org/10.1016/S0378-1127(97)00336-8
Smith, S. E.; Read, D. J. (Eds.). Mycorrhizal symbiosis. 3. ed. Cambridge, UK: Academic Press, 2008.
Sørense, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its
application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab, v. 5, no. 4, p. 1-34,
1948. Available from: <http://www.royalacademy.dk/Publications/High/295_Sørensen, Thorvald.pdf>.
Accessed on: Apr. 22, 2019.
Taylor, T. N.; Emy, W.; Haas, H.; Kerp, H. Fossil arbuscular mycorrhizae from the early Devonian. Mycologia, v. 87, no. 4,
p. 387-395, 1995. https://doi.org/10.2307/3760776
Tillman, D. The greening of green revolution. Nature, v. 396, p. 211-212, 1998. https://doi.org/10.1038/24254
Tisdall, J. M. Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, v. 29, no. 6, p. 729-743,
1991. https://doi.org/10.1071/SR9910729
Van Der Heijden, M. G. A.; Boller, G. A. T.; Wiemken, A.; Sanders, I. R. Different arbuscular mycorrhizal fungal species are potential
determinants of plant community structure. Ecology, v. 79, p. 2082-2091, 1998. https://doi.org/10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2
Van Der Heijden, M. G. A.; Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural
ecosystems. Journal of Ecology, v. 97, no. 6, p. 1139-1150, 2009. https://doi.org/10.1111/j.1365-2745.2009.01570.x
Veresoglou, S. D.; Menexes, G.; Rillig, M. C. Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass
to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza, v. 22, p. 227-235, 2012. https://doi.org/10.1007/s00572-011-0398-7
Walkley, A. J.; Black, I. A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sciences, v. 37,
p. 29-38, 1934.
Wolfe, B. E.; Mummey, D. L.; Rillig, M. C.; Klironomos, J. M. Small-scale heterogeneity of arbuscular mycorrhizal fuangal abundance
and community composition in a wetland plant community. Mycorrhiza, v. 17, no. 3, p. 175-183, 2007. https://doi.org/10.1007/s00572-006-0089-y
Wolfe, B. E.; Weishampel, P. A.; Klironomos, J. M. Arbuscular mycorrhizal fungi and water table affect wetland plant community
composition. Journal of Ecology, v. 94, no. 5, p. 905-914, 2006. https://doi.org/10.1111/j.1365-2745.2006.01160.x
Zangaro, W.; Nishidate, F. R.; Vandresen, J.; Andrade, G.; Nogueira, M. A. Root mycorrhizal colonization and plant responsiveness
are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of
Tropical Ecology, v. 23, no. 1, p. 53-62, 2007. https://doi.org/10.1017/S0266467406003713
Zhang, Q.; Sun, Q.; Koide, R.T.; Peng, Z.; Zhou, J.; Gu, X.; Gao, X.; Yu, M. Arbuscular mycorrhizal fungal mediation of plant-plant
interactions in a Marshland Plant Community. The Scientific World Journal, v. 48, p. 2-11, 2014. https://doi.org/10.1155/2014/923610
ISSN 2358-2731