Vol. 6, No. 13, p. 429-438 - Aug. 31, 2019
The application of metagenomics in hydrocarbon resource management
Mordecai Gana



Abstract
The last 5-10 years has witness a new proven field of research where explanation have been provided to non-cultured microbes. This uncultured microorganisms forms the major group of organisms found in most environment of the Earth. The science of metagenomics makes it possible to investigate resources which can be used to develop new enzymes, genes and several chemical compounds for use in biotechnology. Studies of microorganisms in pure laboratory culture for over a century have led to significant advances into microbial genetics and physiology, biotechnology and molecular biology. The rapid advancement in sequencing technology has brought about drastic reduction cost of sequencing thereby leading to increasing sequencing project been undertaken. This advancement has provided the privilege for the continual use of this sequencing technology to monitor microbes in the environment which before now are not available. While metagenomic applications have been used to consistently have a better understanding of ecology and microbial diversity, it is pertinent to note that its application in environmental monitoring and application is commonly increasing and has been one of the research areas in focus. To this end this article seek to provide a general overview of what metagenmics is, its principle and application in hydrocarbon resource management.
Keywords
Metagenomics; Targeted metagenomics; Shotgun metagenomics; Petroleum; Bioremediation.
DOI
10.21472/bjbs.061310
Full text
PDF
References
Baquiran, J. P. M. Application of metagenomics for identification of novel petroleum hydrocarbon degrading
enzymes in natural asphalts from the Rancho La Brea Tar Pits. Riverside: University of Riverside, 2010.
(Doctoral dissertation).
Behjati, S.; Tarpey, P. S. What is next generation sequencing? Archives of Disease in Childhood-Education
and Practice, v. 98, no. 6, p. 236-238, 2013. https://doi.org/10.1136/archdischild-2013-304340
Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Kumar, V.; Sharma, K. D. Bioremediation of polyaromatic
hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, v. 46, no. 1,
p. 7-21, 2015. https://doi.org/10.1590/S1517-838246120131354
Chen, K.; Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS
Computational Biology, v. 1, no. 2, e24, 2005. https://doi.org/10.1371/journal.pcbi.0010024
Delmont, T. O.; Simonet, P.; Vogel, T. M. Describing microbial communities and performing global comparisons
in the 'omic era. International Society of Microbial Ecology Journal, v. 6, no. 9, p. 1625-1628,
2012. https://doi.org/10.1038/ismej.2012.55
Deutschbauer, A. M.; Chivian, D.; Arkin, A. P. Genomics for environmental microbiology. Current Opinion in
Biotechnology, v. 17, no. 3, p. 229-235, 2006. https://doi.org/10.1016/j.copbio.2006.04.003
Dua, M.; Singh, A.; Sethunathan, N.; Johri, A. Biotechnology and bioremediation: Successes and limitations.
Applied Microbiology and Biotechnology, v. 59, no. 2/3, p. 143-152, 2002. https://doi.org/10.1007/s00253-002-1024-6
Ferrer, M.; Golyshina, O.; Beloqui, A.; Golyshin, P. N. Mining enzymes from extreme environments. Current
Opinion in Microbiology, v. 10, no. 3, p. 207-214, 2007. https://doi.org/10.1016/j.mib.2007.05.004
Galvão, T. C.; Mohn, W. W.; Lorenzo, V. Exploring the microbial biodegradation and biotransformation
gene pool. Trends in Biotechnology, v. 23, no. 10, p. 497-506, 2005. https://doi.org/10.1016/j.tibtech.2005.08.002
García Martín, H.; Ivanova, N.; Kunin, V.; Warnecke, F.; Barry, K. W.; McHardy, A. C.; Yeates, C.;
He, S.; Salamov, A. A.; Szeto, E.; Dalin, E.; Putnam, N. H.; Shapiro, H. J.; Pangilinan, J. L.; Rigoutsos, I.;
Kyrpides, N. C.; Blackall, L. L.; McMahon, K. D.; Hugenholtz, P. Metagenomic analysis of two enhanced biological
phosphorus removal (EBPR) sludge communities. Nature Biotechnology, v. 24, no. 10, p. 1263, 2006. https://doi.org/10.1038/nbt1247
Grabowski, A.; Nercessian, O.; Fayolle, F.; Blanchet, D.; Jeanthon, C. Microbial diversity in production waters
of a low-temperature biodegraded oil reservoir. FEMS Microbiology Ecology, v. 54, no. 3, 427-443, 2005.
https://doi.org/10.1016/j.femsec.2005.05.007
Handelsman, J.; Rondon, M. R.; Brady, S. F.; Clardy, J.; Goodman, R. M. Molecular biological access to the chemistry
of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, v. 5, no. 10,
p. R245-R249, 1998. https://doi.org/10.1016/S1074-5521(98)90108-9
Henkel, M.; Müller, M. M.; Kügler, J. H.; Lovaglio, R. B.; Contiero, J.; Syldatk, C.; Hausmann, R. Rhamnolipids
as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry,
v. 47, no. 8, p. 1207-1219, 2012. https://doi.org/10.1016/j.procbio.2012.04.018
Jacques, R. J. S.; Bento, F. M.; Antoniolli, Z. I.; Camargo, F. A. D. O. Biorremediação de solos contaminados
com hidrocarbonetos aromáticos policíclicos. Ciência Rural, v. 37, n. 4, p. 1192-1201, 2007.
https://doi.org/10.1590/S0103-84782007000400049
Kennedy, J.; O'leary, N. D.; Kiran, G. S.; Morrissey, J. P.; O'Gara, F.; Selvin, J.; Dobson, A. D. W. Functional
metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine
ecosystems. Journal of Applied Microbiology, v. 111, no. 4, p. 787-799, 2011. https://doi.org/10.1111/j.1365-2672.2011.05106.x
Kuiper, I.; Lagendijk, E. L.; Bloemberg, G. V.; Lugtenberg, B. J. Rhizoremediation: A beneficial plant-microbe interaction.
Molecular Plant-Microbe Interactions, v. 17, no. 1, p. 6-15, 2004. https://doi.org/10.1094/MPMI.2004.17.1.6
Kure, J. T.; Gana, M.; Emmanuel, A.; Isah, R. M.; Ukubuiwe, C. C. Bacteria associated with heavy metal bioremediation:
A review. International Journal of Applied Biological Research, v. 9, no. 1, p. 134-148, 2018.
Li, H.; Yang, S. Z.; Mu, B. Z.; Rong, Z. F.; Zhang, J. Molecular analysis of the bacterial community in a continental
high-temperature and water-flooded petroleum reservoir. FEMS Microbiology Letters, v. 257, no. 1, p. 92-98, 2006.
https://doi.org/ 10.1111/j.1574-6968.2006.00149.x
Marcos, M. S.; Lozada, M.; Dionisi, H. M. Aromatic hydrocarbon degradation genes from chronically polluted Subantarctic
marine sediments. Letters in Applied Microbiology, v. 49, no. 5, p. 602-608, 2009. https://doi.org/10.1111/j.1472-765X.2009.02711.x
Morikawa, M.; Ito, M.; Imanaka, T. Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and
nucleotide sequence of the regulator gene, psf-1. Journal of Fermentation and Bioengineering, v. 74, no. 5,
p. 255-261, 1992. https://doi.org/10.1016/0922-338X(92)90055-Y
Ollivier, B.; Magot, M. (Eds.). Petroleum microbiology. Washington, DC: ASM Press, 2005.
Ono, A.; Miyazaki, R.; Sota, M.; Ohtsubo, Y.; Nagata, Y.; Tsuda, M. Isolation and characterization of naphthalene-catabolic
genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Applied Microbiology and
Biotechnology, v. 74, no. 2, p. 501-510, 2007. https://doi.org/10.1007/s00253-006-0671-4
Paul, D.; Pandey, G; Pandey, J; Jain, R. K. Accessing microbial diversity for bioremediation and environmental restoration.
Trends in Biotechnology, v. 23, no. 3, p. 135-142, 2005. https://doi.org/10.1016/j.tibtech.2005.01.001
Rabus, R.; Kube, M.; Heider, J.; Beck, A.; Heitmann, K.; Widdel, F.; Reinhardt, R. The genome sequence of an anaerobic
aromatic-degrading denitrifying bacterium, strain EbN1. Archives of Microbiology, v. 183, no. 1, p. 27-36, 2005.
https://doi.org/10.1007/s00203-004-0742-9
Rahman, M. E. A. Biodegradation of crude oil by bacteria isolated from produced formation water of an onshore oil field
in Sudan. Khartoum: University of Khartoum, 2011. (Doctoral dissertation).
Riesenfeld, C. S.; Schloss, P. D.; Handelsman, J. Metagenomics: Genomic analysis of microbial communities. Annual
Reviews of Genetics, v. 38, p. 525-552, 2004. https://doi.org/10.1146/annurev.genet.38.072902.091216
Roy, A. A review on the biosurfactants: Properties, types and its applications. Journal of Fundamental Renewable
Energy Application, 8:1, 2017. https://doi.org/10.4172/2090-4541.1000248
Salanitro, J. P. Bioremediation of petroleum hydrocarbons in soil. Advances in Agronomy, v. 72, no. 53, p. 105,
2001.
Satpute, S. K.; Banat, I. M.; Dhakephalkar, P. K.; Banpurkar, A. G.; Chopade, B. A. Biosurfactants, bioemulsifiers and
exopolysaccharides from marine microorganisms. Biotechnology Advances, v. 28, no. 4, p. 436-450, 2010.
https://doi.org/10.1016/j.biotechadv.2010.02.006
Sierra-García, I. N.; Alvarez, J. C.; Vasconcellos, S. P.; Souza, A. P.; Santos Neto, E. V.; Oliveira, V. M. New
hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS ONE, v. 9,
p. 2, e90087, 2014. https://doi.org/10.1371/journal.pone.0090087
Simon, C.; Daniel, R. Metagenomic analyses: Past and future trends. Applied and Environmental Microbiology, v. 77,
no. 4, 1153-1161, 2011. https://doi.org/10.1128/AEM.02345-10
Suenaga, H.; Ohnuki, T.; Miyazaki, K. Functional screening of a metagenomic library for genes involved in microbial
degradation of aromatic compounds. Environmental Microbiology, v. 9, no. 9, 2289-2297, 2007. https://doi.org/10.1111/j.1462-2920.2007.01342.x
Techtmann, S. M.; Hazen, T. C. Metagenomic applications in environmental monitoring and bioremediation. Journal of
Industrial Microbiology & Biotechnology, v. 43, no. 10, p. 1345-1354, 2016. https://doi.org/10.1007/s10295-016-1809-8
Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics: A guide from sampling to data analysis. Microbial Informatics and
Experimentation, 2:3, 2012. https://doi.org/10.1186/2042-5783-2-3
Van Hamme, J. D.; Singh, A.; Ward, O. P. Recent advances in petroleum microbiology. Microbiology and Molecular Biology
Reviews, v. 67, no. 4, p. 503-549, 2003. https://doi.org/10.1128/mmbr.67.4.503-549.2003
Vieites, J. M.; Guazzaroni, M.-E.; Beloqui, A.; Golyshin, P. N.; Ferrer, M. Metagenomics approaches in systems microbiology.
FEMS Microbiology Reviews, v. 33, no. 1, p. 236-255, 2008. https://doi.org/10.1111/j.1574-6976.2008.00152.x
Wang, J.; Ma, T.; Zhao, L.; Lv, J.; Li, G.; Liang, F.; Liu, R. PCR-DGGE method for analyzing the bacterial community in a
high temperature petroleum reservoir. World Journal of Microbiology and Biotechnology, v. 24, no. 9, p. 1981-1987,
2008. https://doi.org/10.1007/s11274-008-9694-6
Wexler, M.; Bond, P. L.; Richardson, D. J.; Johnston, A. W. A wide host-range metagenomic library from a waste water
treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environmental Microbiology, v. 7, no. 12,
p. 1917-1926, 2005. https://doi.org/10.1111/j.1462-2920.2005.00854.x
Williams, W.; Trindade, M. Metagenomics for the discovery of novel biosurfactants. In: Charles, T.; Liles, M.; Sessitsch,
A. (Eds.). Functional metagenomics: Tools and applications. Cham: Springer, 2017. p. 95-117. https://doi.org/10.1007/978-3-319-61510-3_6
Xiong, M.; Zhao, Z.; Arnold, J.; Yu, F. Next-generation sequencing. BioMedical Research International, v. 2010,
Article ID 370710, 2010. https://doi.org/10.1155/2010/370710
Yoshida, N.; Yagi, K.; Sato, D.; Watanabe, N.; Kuroishi, T.; Nishimoto, K.; Tani, Y. Bacterial communities in petroleum
oil in stockpiles. Journal of Bioscience and Bioengineering, v. 99, no. 2, p. 143-149, 2005. https://doi.org/10.1263/jbb.99.143
ISSN 2358-2731