Vol. 6, No. 12, p. 39-51 - Apr. 30, 2019
The potential of naturally occurring bacteria for the bioremediation of toxic metals pollution
Amit Vashishth , Nimisha Tehri and Pawan Kumar
Abstract
An increase in industrialization and various kind of human activities added a huge amount of toxic heavy metals in the soil. As a result, toxic heavy metals in the environment may be adversely affects human being and aquatic ecosystem. Thus, it is very essential to understand mechanism of bioremediation through eco-friendly agent i.e. bacteria. Accumulation of high metal concentrations in soil above threshold limit causes lethal to bacterial communities in the environment. Few bacteria develop resistance mechanism to tolerate these toxic heavy metals and contain various methods to respond the metal stress. The present review emphasizes to understand the mechanism of bacterial resistance against toxic metals. Moreover, mechanism of bioaugmentation, biosorption, and bioaccumulation methods also described clearly.
Keywords
Bioremediation; Xenobiotic compounds; Heavy metals; Bacteria; Tolerance; PAHs.
DOI
10.21472/bjbs.061205
Full text
PDF
References
Agarry, S. E.; Owabor, C. N. Anaerobic bioremediation of marine sediment artificially contaminated with
anthracene and naphthalene. Environmental Technology, v. 32, p. 1375-1381, 2011.
Agarwal, S. K. Environmental Biotechnology. 1. ed. New Delhi, India: APH Publishing Corporation, 1998.
Ahemad, M.; Khan, M. S.; Zaidi, A.; Wani, P. A. Remediation of herbicides contaminated soil using microbes.
In: Khan, M. S.; Zaidi, A.; Musarrat, J. (Eds.). Microbes in sustainable agriculture. New York: Nova
Science Publishers, 2009. p. 261-284.
Akar, T.; Tunali, S.; Cabuk, A. Study on the characterization of lead(II) biosorption by fungus Aspergillus
parasiticus. Applied Biochemistry and Biotechnology, v. 136, p. 389-406, 2007.
Anon. Bioremediation of Alaskan sites on the way. Oil & Gas Journal, v. 4, p. 42-46, 1990.
Atlas, R. M. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, v. 31,
p. 178-182, 1995.
ATSDR - Agency for Toxic Substances and Disease Registry. Toxicological profile for lead. Atlanta:
US Department of Health and Human Services, 2007.
Bae, W.; Mehra, R. K.; Mulchandani, A.; Chen, W. Genetic engineering of Escherichia coli for enhanced uptake
and bioaccumulation of mercury. Applied and Environmental Microbiology, v. 67, p. 5335-5338, 2001.
Bae, W.; Wu, C. H.; Kostal, J.; Mulchandani, A.; Chen, W. Enhanced mercury biosorption by bacterial cells with
surface-displayed MerR. Applied and Environmental Microbiology, v. 69, p. 3176-3180, 2003.
Al-Baldawi, I. A.; Abdullah, S. R. S.; Anuar.N.; Suja, F.; Mushrifah, I. Phytodegradation of total petroleum
hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecological Engineering,
v. 74, p. 463-473, 2015.
Barnhart, M. J.; Meyers, J. M. Pilot bioremediation tells all about petroleum contaminated soil. Pollution
Engineerings, v. 21, p. 110-112, 1989.
Bartha, R.; Bossert, I. The treatment and disposal of petroleum refinery wastes. In: Atlas, R.M. (Ed.).
Petroleum microbiology. New York, USA: Macmillan Publishing, 1984. p. 553-578.
Bellinger, D. C.; Bellinger, A. M. Childhood lead poisoning: The torturous path from science to policy.
Journal of Clinical Investigation, v. 116, p. 853-857, 2006.
Beolchini, F.; Rocchetti, L.; Regoli, F.; Dell'Anno, A. Bioremediation of marine sediments contaminated
by hydrocarbons: Experimental analysis and kinetic modeling. Journal of Hazardous Materials, v. 182,
p. 403-407, 2010.
Brierley, C. L. Bioremediation of metal-contaminated surface and groundwater. Geomicrobiology Journal,
v. 8, p. 201-223, 1990.
Brown, G. E. J.; Foster, A. L.; Ostergren, J. D. Mineral surfaces and bioavailability of heavy metals: A
molecular-scale perspective. PNAS, v. 96, p. 3388-3395, 1999.
Bruschi, M.; Goulhen, F. New bioremediation technologies to remove heavy metals and radionuclides using Fe
(III)-sulfate- and sulfur reducing bacteria. In: Singh, S. N.; Tripathi, R. D. (Eds.). Environmental
Bioremediation Technologies. NY, USA: Springer, 2006. p. 35-55.
Carter, P.; Cole, H, Burton, J. Bioremediation: Successes and shortfalls. Proceedings of Key Bioremediation
Process, 2006.
Chaudri, A. M.; McGrath, S. P.; Giller, K. E.; Rietz, E.; Sauerbeck, D. R. Enumeration of indigenous Rhizobium
leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biology
and Biochemistry, v. 25, p. 301-309, 1993.
Chen, C.; Wang, J. L. Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomedical and
Environmental Sciences, v. 20, p. 478-482, 2007.
Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.
Annual Review of Plant Biology, v. 53, p. 159-182, 2002.
Comte, S.; Guibaud, G.; Baudu, M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and
Pb for different pH values. Journal of Hazardous Materials, v. 151, p. 185-193, 2008.
D'Annibale, A.; Leonardi, V.; Federici, E.; Baldi, F.; Zecchini, F.; Petruccioli, M. Leaching and microbial treatment
of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Applied Microbiology and Biotechnology,
v. 74, p. 1135-1144, 2007.
Das, N.; Vimala, R.; Karthika, P. Biosorption of heavy metals: An overview. Indian Journal of Biotechnology, v. 7,
p. 159-169, 2008.
Dell'Anno, A.; Beolchini, F.; Rocchetti, L.; Luna, G. M.; Danovaro, R. High bacterial biodiversity increases degradation
performance of hydrocarbons during bioremediation of contaminated harbour marine sediments. Environmental Pollution,
v. 167, p. 85-92, 2012.
Divya, B.; Deepak, K. M. Plant-microbe interaction with enhanced bioremediation. Research Journal of BioTechnology,
v. 6, p. 72-79, 2011.
EFSA - European Food Safety Authority. Cadmium in food: Scientific opinion of the panel on contaminants in the food chain.
EFSA Journal, v. 7, no. 3, 2009. https://doi.org/10.2903/j.efsa.2009.980
Evanko, C. R.; Dzombak, D. A. Remediation of metals-contaminated soil and groundwater. Environmental Sciences,
v. 412, p. 1-45, 1997.
Fan, M. Y.; Xie, R. J.; Qin, G. Bioremediation of petroleum-contaminated soil by a combined system of
biostimulation-bioaugmentation with yeast. Environmental Technology, v. 35, no. 1/4, p. 391-399,
2013.
Fang, L. C.; Huang, Q. Y.; Wei, X.; Liang, W.; Rong, X. M.; Chen, W. L.; Cai, P. Microcalorimetric and
potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS),
minerals and their composites. Bioresource Technology, v. 101, p. 5774-5779, 2010.
Fang, L.; Wei, X.; Cai, P.; Huang, Q.; Chen, H.; Liang, W.; Rong, X. Role of extracellular polymeric substances
in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresource Technology,
v. 102, p. 1137-1141, 2011.
Gadd, G. M. Metals and microorganisms: A problem of definition. FEMS Microbiology Letters, v. 100,
p. 197-204, 1992.
Gan, S.; Lau, E. V.; Ng, H. K. Remediation of soils contaminated with polycyclic aromatic hydrocarbon
biodegradation. Journal of Hazardous Materials, v. 172, p. 532-549, 2009.
Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals
from the environment. Bioresource Technology, v. 77, p. 229-236, 2001.
Gaspare, L.; John, F.; Machiwa, S. J. M.; Streck, G.; Brack, W. Polycyclic aromatic hydrocarbon (PAH) contamination
of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania. Environmental Pollution,
v. 157, p. 24-34, 2009.
Giller, K. E.; Witter, E.; McGrath, S. P. Toxicity of heavy metals to microorganisms and microbial process in
agricultural soils: A review. Soil Biology and Biochemistry, v. 30, p. 1389-1414, 1998.
Gómez Jiménez-T, R.; Moliterni, R.; Rodríguez, E.; Fernández, L.; Villaseñor,
F. J. Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Procedia Environmental
Sciences, v. 9, p. 54-59, 2011. https://doi.org/10.1016/j.proenv.2011.11.010
Gray, E. J.; Smith, D. L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium
signaling processes. Soil Biology and Biochemistry, v. 37, p. 395-412, 2005.
Guine, V.; Spadini, L.; Sarret, G.; Muris, M.; Delolme, C.; Gaudet, J. P.; Martins, J. M. Zinc sorption to three
gram-negative bacteria: Combined titration, modeling and EXAFS study. Environmental Science & Technology,
v. 40, p. 1806-1813, 2006.
Gurer, H.; Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biology &
Medicine, v. 29, p. 927-945, 2000.
Haritash, A. K.; Kaushik, C. P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal
of Hazardous Materials, v. 169, no. 1/3, p. 1-15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137
Hassan, I.; Mohamedelhassan, E.; Ernest, K.; Yuan, Z. C. A Review article: Electrokinetic bioremediation current knowledge
and new prospects. Advances in Microbiology, v. 6, p. 57-72, 2016. https://doi.org/10.4236/aim.2016.61006
Head, I. M.; Jones, D. M.; Roling, W. F. M. Marine microorganisms make a meal of oil. Nature Reviews Microbiology,
v. 4, p. 173-182, 2006.
Head, I. M.; Swannell, R. P. J. Bioremediation of petroleum hydrocarbon. Current Opinion in Biotechnology,
v. 3, p. 234-239, 1999.
Hernberg, S.; Nikkanen, J. Enzyme inhibition by lead under normal urban conditions. Lancet, v. 10, p. 63-64, 1970.
Hess, A.; Zarda, B.; Hahn, D.; Hanner, A.; Stax, D. In situ analysis of denitrifying toluene and mxylene degrading
bacteria in a diesel fuel contaminated laboratory aquifer column. Applied and Environmental Microbiology, v. 63,
p. 2136-2141, 1997.
Huckle, J. W.; Morby, A. P.; Turner, J. S.; Robinson, N. J. Isolation of a prokaryotic metallothionein locus and analysis
of transcriptional control by trace metal ions. Molecular Microbiology, v. 7, p. 177-187, 1993.
Igiri, B. E.; Okoduwa, S. I. R.; Idoko, G. O.; Akabuogu, E. P.; Adeyi, A. O.; Ejiogu, I. K. Toxicity and Bioremediation of
heavy metals contaminated ecosystem from tannery wastewater. Journal of Toxicology, v. 2018, Article ID 2568038, 2018.
https://doi.org/10.1155/2018/2568038
Ijah, U. J. J. Accelerated crude oil biodegradation in soil by inoculation with bacterial slurry. Journal of Environmental
Sciences, v. 1, p. 38-47, 2002.
Ijah, U. J. J. The potential use of chickendrop microorganisms for oil spill remediation. The Environmentalist, v. 23,
p. 89-95, 2003.
Ijah, U. J. J.; Antai, S. P. Degradation and mineralization of crude oil by bacteria. Nigerian Journal of Biotechnology,
v. 5, p. 79-87, 1988.
Janjua, N. Z.; Kasi, P. M.; Nawaz, H.; Farooqui, S. Z.; Khuwaja, U. B.; Hassan, N.; Jafri, S. N.; Lutfi, S. A.; Kadir, M. M.;
Sathiakumar, N. Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health,
6:84, 2006. https://doi.org/10.1186/1471-2458-6-84
Jarup, L. Hazards of heavy metal contamination. British Medical Bulletin, v. 68, p. 167-182, 2003.
Kamaludeen, S. P. B. K.; Arunkumar, K. R.; Avudainayagam, S.; Ramasamy, K. Bioremediation of chromium contaminated environments.
International Journal of Experimental Biology, v. 41, p. 972-985, 2003.
Kao, P. H.; Huang, C. C.; Hseu, Z. Y. Response of microbial activities to heavy metals in a neutral loamy soil treated with
biosolid. Chemosphere, v. 64, p. 63-70, 2006.
Kelly, D. J. A.; Budd, K.; Lefebvre, D. D. The biotransformation of mercury in pH-stat cultures of microfungi. Canadian
Journal of Botany, v. 84, p. 254-260, 2006.
Khan, M. S.; Zaidi, A.; Wani, P. A.; Oves, M. Role of plant growth promoting rhizobacteria in the remediation of metal
contaminated soils. Environmental Chemistry Letters, v. 7, p. 1-19, 2009.
Kinya, K.; Kimberly, L. D. Current use of bioremediation for TCE cleanup: Results of a survey. Remediation Journal,
v. 6, p. 1-14, 1996.
Kumar, A.; Bisht, B. S.; Joshi, V. D.; Dhewa, T. Review on bioremediation of polluted environment: A management tool.
International Journal of Environmental Sciences, v. 1, p. 1079-1093, 2011.
Law, R. J.; Klungsoyr, J. The analysis of polycyclic aromatic hydrocarbons in marine samples. International Journal of
Environmental Policy and Decision Making, v. 13, p. 262-283, 2000.
Lloyd, J. R.; Lovley, D. R. Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology,
v. 12, p. 248-253, 2001.
Lovely, D. R. Dissimilatory metal reduction: From early life to bioremediation. ASM News, v. 68, p. 231-237, 2002.
Lovley, D. R.; Philips, E. J.; Gorby, Y. A.; Landa, E. R. Microbial reduction of uranium. Nature, v. 350, p. 413-416,
1991.
Lovley, D. R.; Phillips, E. J. P. Novel mode of microbial energy metabolism: Organic carbon oxidation to dissimilatory
reduction of iron or manganese. Applied and Environmental Microbiology, v. 54, p. 1472-1480, 1988.
Lyons, R. A.; Temple, J. M. F.; Evans, D.; Fone, D. L.; Palmer, S. R. Acute health effects of the sea empress oil spill.
Journal of Epidemiology and Community Health, v. 53, p. 306-310, 1999.
Mejare, M.; Bulow, L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals.
Trends in Biotechnology, v. 19, p. 67-73, 2001.
Millar, J. A.; Battistini, V.; Cumming, R. L. C.; Carswell, F.; Goldberg, A. Lead and d-aminolevulinic acid dehydratase
levels in mentally retarded children and in lead-poisoned suckling rats. Lancet, v. 3, p. 695-698, 1970.
Miura, N. Individual susceptibility to cadmium toxicity and metallothionein gene polymorphisms with reference to current
status of occupational cadmium exposure. Industrial Health, v. 47, p. 487-494, 2009.
Needleman, H. Lead poisoning. Annual Review of Medicine, v. 55, p. 209-222, 2004.
Nies, D. H. Microbial heavy metal resistance. Applied Microbiology and Biotechnology, v. 51, p. 730-750, 1999.
O'Brien, P. Y.; Dixon, P. S. The effects of oils and oil components on algae: A review. British Phycological
Journal, v. 11, p. 115-142, 1976.
Odu, C. T. I. Fermentation characteristics and biochemical reactions of some organisms isolated from oil polluted soils.
Environmental Pollution, v. 15, p. 271-276, 1978.
Okpokwasili, G. C.; Okorie, B. B. Biodeterio-ration potentials of microorganisms isolated from engine lubricating oil.
Tribology International, v. 21, p. 215-220, 1988.
Oliveira, N. C.; Rodrigues, A. A.; Alves, M. I. R.; Antoniosi Filho, N. R.; Sadoyama, G.; Vieira, J. D. G. Endophytic bacteria
with potential for bioremediation of petroleum hydrocarbons and derivatives. African Journal of Biotechnology, v. 12,
p. 2977-2984, 2012.
Olson, J. W.; Mehta, N. S.; Maier, R. J. Requirement of nickel metabolism protein HypA and HypB for full activity of both
hydrogenase and urease in Helicobacter pylori. Molecular Microbiology, v. 39, p. 176-182, 2001.
Onwubuya, K.; Cundy, A.; Puschenreiter, M.; Kumpiene, J.; Bone, B. Developing decision support tools for the selection of
"gentle" remediation approaches. Science of the Total Environment, v. 407, p. 6132-6142, 2009.
Pinedo, R. C.; Aleu, J.; Collado, I. G. Pollutants biodegradation by fungi. Current Organic Chemistry, v. 13,
p. 1194-1214, 2009.
Pritchard, P. H. Bioremediation as a technology; experiences with the Exxon Valdez spill. Journal of Hazardous
Materials, v. 28, p. 76-79, 1991.
Pritchard, P. H.; Costa, C. F. EPA's Alaska oil spill bioremediation project. Environmental Science & Technology,
v. 25, p. 115-130, 1991.
Roane, T. M.; Pepper, I. L. Microorganisms and metal pollution. In: Maier, R. M.; Pepper, I. L.; Gerba, C. B. (Eds.). Environmental
microbiology. London: Academic Press, 2000.
Saadoun, I. M. K.; Al-Ghzawi, Z. D. Bioreme-diation of petroleum contamination. In: Fingerman, M.; Nagabhushanam, R. (Eds.).
Bioremediation of aquatic and terrestrial ecosystems. Enfield, USA: Science Publishers, 2005.
Saranya, K.; Sundaramanickam, A.; Shekhar, S.; Swaminathan, S.; Balasubramanian, T. Bioremediation of mercury by Vibrio
fluvialis screened from industrial effluents. BioMed Research International, v. 12, p. 1-6, 2017.
Sayler, G. S.; Ripp, S. Field applications of genetically engineered microorganisms for bioremediation process. Current
Opinion in Biotechnology, v. 11, p. 286-289, 2000.
Sikkema, J.; Bont, J. A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews,
v. 59, p. 201-222, 1995.
Silver, S. Bacterial heavy metal resistance: New surprises. Annual Review of Microbiology, v. 50, p. 753-789, 1996.
Singh, S.; Kang, S. H.; Mulchandani, A.; Chen, W. Bioremediation: Environmental cleanup through pathway engineering.
Current Opinion in Biotechnology, v. 19, p. 437-444, 2008.
Sloan, R. Bioremediation demonstrated at a hazardous waste site. Oil & Gas Journal, v. 5, p. 61-66, 1987.
Smith, V. H.; Graham, D. W.; Cleland, D. D. Application of resource ratio theory to hydrocarbon biodegradation.
EnvironŽmental Science & Technology, v. 32, p. 3386-3395, 1998.
Spormann, A. M.; Widdel, F. Metabolism of alkyl benzenes, alkanes, and other hydrocarbons in anaerobic bacteria.
Biodegradation, v. 11, p. 85-105, 2000.
Sposito, F. G. The chemistry of soils. In: Maier, R. M.; Pepper, I. L.; Gerba, C. B. (Eds.). Environmental microbiology.
London: Academic Press, 2000.
Strong, P. J.; Burgess, J. E. Treatment methods for winerelated ad distillery wastewaters: A review. Bioremediation Journal,
v. 12, p. 70-87, 2008.
Talos, K.; Pager, C.; Tonk, S.; Majdik, C.; Kocsis, B.; Kilar, F.; Pernyeszi, T. Cadmium biosorption on native Saccharomyces
cerevisiae cells in aqueous suspension. Acta Universitatis Sapientiae, Agriculture and Environment, v. 1, p. 20-30, 2009.
Tang, C. Y.; Criddle, Q. S.; Fu, C. S.; Leckie, J. O. Effect of flux (transmembrane pressure) and membranes properties on
fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing waste
water. Journal of Environmental Science and Technology, v. 41, p. 2008-2014, 2007.
Thavasi, R. Microbial biosurfactants: From an environment application point of view. Journal of Bioremediation and
Biodegradation, v. 2, 100104e, 2011.
Tigini, V.; Prigione, V.; Giansanti, P.; Mangiavillano, A.; Pannocchia, A.; Varese, G. C. Fungal biosorption, an innovative
treatment for the decolourisation and detoxification of textile effluents. Water, v. 2, p. 550-565, 2010.
Tunali, S.; Akar, T.; Oezcan, A. S.; Kiran, I.; Oezcan, A. Equilibrium and kinetics of biosorption of lead(II) from aqueous
solutions by Cephalosporium aphidicola. Separation and Purification Technology, v. 47, p. 105-112, 2006.
Umrania, V. V. Bioremediation of toxic heavy metals using acido-thermophilic autotrophes. Bioresource Technology,
v. 97, no. 10, p. 1237-1242, 2006. https://doi.org/10.1016/j.biortech.2005.04.048
Valls, M.; Atrian, S. L. V.; La, F. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha
CH34 for immobilization of heavy metals in soil. Nature Biotechnology, v. 18, p. 661-665, 2000.
Venosa, A. D.; Lee, K.; Suidan, M. T.; Garcia, B. S.; Cobanli, S.; Moteleb, M.; Haines, J. R.; Tremblay, G.; Hazelwood, M.
Bioremediation and biorestoration of a crude oil contaminated freshwater wetland on the St. Lawrence River. Biomedical
Journal, v.6, p. 261-281, 2002.
Verma, N.; Singh, M. Biosensors for heavy metals. BioMetals, v. 18, no. 1, p. 121-129, 2005.
Wu, T.; Xie, W. J.; Yi, L.; Li, X. B.; Yang, B. H.; Wang, J. Surface activity of salt-tolerant Serratia spp. and crude
oil biodegradation in saline soil. Plant, Soil and Environment, v. 58, p. 412-416, 2012.