Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 6, no. 12 (2019) Gomes

 

Vol. 6, No. 12, p. 9-16 - Apr. 30, 2019

 

GABAergic transmission and modulation of anxiety: A review on molecular aspects



Francisco Isaac Fernandes Gomes , Maria Gerusa Brito Aragão , Mirna Marques Bezerra and Hellíada Vasconcelos Chaves

Abstract
Stress responses activate protective mechanisms to achieve homeostasis, but they can be detrimental when such responses become maladaptive. Anxiety relates to risk assessment of a potential threat and involves uncertainty regarding the anticipation of a threatening situation and it dampers quality of life. Gamma-Aminobutyric Acid (GABA) is the major inhibitory system in the central nervous system and plays a key role in the regulation of neuronal transmission in the brain, affecting many physiological and psychological processes. This mini-review aims to summarize key points concerned with the GABAergic transmission and basic aspects related to the GABAergic system in anxiety.


Keywords
Anxiety; GABA transmission; Pharmacotherapy; stress.

DOI
10.21472/bjbs.061202

Full text
PDF

References
Atack, J. R. The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics. Expert Opinion on Investigational Drugs, v. 14, no. 5, p. 601-618, 2005. https://doi.org/10.1517/13543784.14.5.601

Baldwin, D. S.; Allgulander, C.; Altamura, A. C.; Angst, J.; Bandelow, B.; den Boer, J.; Boyer, P.; Davies, S.; dell'Osso, B.; Eriksson, E.; Fineberg, N.; Fredrikson, M.; Herran, A.; Maron, E.; Metspalu, A.; Nutt, D.; van der Wee, N.; Vázquez-Barquero, J. L.; Zohar, J. Manifesto for a European anxiety disorders research network. European Neuropsychopharmacology, v. 20, no. 6, p. 426-432, 2010. https://doi.org/10.1016/j.euroneuro.2010.02.015

Baldwin, D. S.; Anderson, I. M.; Nutt, D. J.; Bandelow, B.; Bond, A.; Davidson, J. R. T.; Den Boer, J. A.; Fineberg, N. A.; Knapp, M.; Scott, J.; Wittchen, H. U. Evidence-based guidelines for the pharmacological treatment of anxiety disorders: Recommendations from the British Association for Psychopharmacology. Journal of Psychopharmacology, v. 19, no. 6, p. 567-596, 2005. https://doi.org/10.1177/0269881105059253

Bali, A.; Jaggi, A. S. Clinical experimental stress studies: Methods and assessment. Reviews in the Neurosciences, v. 26, no. 5, p. 555-579, 2015. https://doi.org/10.1515/revneuro-2015-0004

Belda, X.; Fuentes, S.; Daviu, N.; Nadal, R.; Armario, A. Stress-induced sensitization: The hypothalamic-pituitary-adrenal axis and beyond. Stress, v. 18, no. 3, p. 269-279, 2015. https://doi.org/10.3109/10253890.2015.1067678

Belda, X.; Fuentes, S.; Daviu, N.; Nadal, R.; Armario, A. Stress-induced sensitization: The hypothalamic-pituitary-adrenal axis and beyond. Stress, v. 18, no. 3, p. 269-279, 2015. https://doi.org/10.3109/10253890.2015.1067678

Beltrán González, A. N.; Pomata, P. E.; Goutman, J. D.; Gasulla, J.; Chebib, M.; Calvo, D. J. Benzodiazepine modulation of homomeric GABAA?1 receptors: Differential effects of diazepam and 4'-chlorodiazepam. European Journal of Pharmacology, v. 743, p. 24-30, 2014. https://doi.org/10.1016/j.ejphar.2014.09.017

Benarroch, E. E. GABAB receptors: Structure, functions, and clinical implications. Neurology, v. 78, no. 8, p. 578-584, 2012. https://doi.org/10.1212/WNL.0b013e318247cd03

Campbell, E. L.; Chebib, M.; Johnston, G. A. R. The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA A receptors. Biochemical Pharmacology, v. 68, no. 8, p. 1631-1638, 2014. https://doi.org/10.1016/j.bcp.2004.07.022

Chebib, M.; Johnston, G. A. R. GABA-activated ligand-gated ion channels: Medicinal chemistry and molecular biology. Journal of Medicinal Chemistry, v. 43, no. 8, p. 1427-1447, 2000. https://doi.org/10.1021/jm9904349

Chebib, M.; Johnston, G. The 'ABC' of GABA receptors: A brief review. Clinical and Experimental Pharmacology and Physiology, v. 26, no. 11, p. 937-940, 2004. https://doi.org/10.1046/j.1440-1681.1999.03151.x

Chebib, M.; Hanrahan, J. R.; Mewett, K. N.; Duke, R. K.; Johnston, G. A. R. Ionotropic GABA receptors as therapeutic targets for memory and sleep disorders. Annual Reports in Medicinal Chemistry, v. 39, no. 4, p. 13-23, 2004. https://doi.org/10.1016/S0065-7743(04)39002-0

Chua, H. C.; Chebib, M. GABA receptors and the diversity in their structure and pharmacology. In: Geraghty, D. P.; Rash, L. D. (Eds.). Ion channels downunder. 1. ed. Cambridge, MA: Elsevier, 2017. (Advances in Pharmacology, v. 79). https://doi.org/10.1016/bs.apha.2017.03.003

Cryan, J. F.; Kaupmann, K. Don't worry "B" happy!: A role for GABA receptors in anxiety and depression. Trends in Pharmacological Sciences, v. 26, no. 1, p. 36-43, 2005. https://doi.org/10.1016/j.tips.2004.11.004

Emson, P. C. GABAB receptors: structure and function. Progress in Brain Research, v. 160, p. 43-57, 2007. https://doi.org/10.1016/S0079-6123(06)60004-6

Fox, A. S.; Kalin, N. H. A Translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. The American Journal of Psychiatry, v. 171, no. 11, p. 1162-1173, 2014. https://doi.org/10.1176/appi.ajp.2014.14040449

Ghose, S.; Winter, M. K.; McCarson, K. E.; Tamminga, C. A.; Enna, S. J. The GABAB receptor as a target for antidepressant drug action. British Journal of Pharmacology, v. 162, no. 11, p. 1-17, 2011. https://doi.org/10.1111/j.1476-5381.2010.01004.x

Hasler, G.; Van Der Veen, J. W.; Tumonis, T.; Meyers, N.; Shen, J.; Drevets, W. C. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Archives of General Psychiatry, v. 64, no. 2, p. 193-200, 2007. https://doi.org/10.1001/archpsyc.64.2.193

Jacob, T. C.; Moss, S. J.; Jurd, R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nature Reviews Neuroscience, v. 9, no. 5, p. 331-343, 2008. https://doi.org/10.1038/nrn2370

Johnston, G. A. R. GABAA receptor pharmacology. Pharmacology and Therapeutics, v. 69, no. 3, p. 173-198, 1996. https://doi.org/10.1016/0163-7258(95)02043-8

Juruena, M. F. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy and Behavior, v. 38, p. 148-159, 2014. https://doi.org/10.1016/j.yebeh.2013.10.020

Karim, N.; Wellendorph, P.; Absalom, N.; Johnston, G. A. R.; Hanrahan, J. R.; Chebib, M. Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes. Amino Acids, v. 44, no. 4, p. 1139-1149, 2013. https://doi.org/10.1007/s00726-012-1456-y

Klumpers, U. M. H.; Veltman, D. J.; Drent, M. L.; Boellaard, R.; Comans, E. F. I.; Meynen, G.; Lammertsma, A. A.; Hoogendijk, W. J. G. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: Preliminary results. European Journal of Nuclear Medicine and Molecular Imaging, v. 37, no. 3, p. 565-574, 2010. https://doi.org/10.1007/s00259-009-1292-9

Kumar, K.; Sharma, S.; Kumar, P.; Deshmukh, R. Therapeutic potential of GABAB receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacology Biochemistry and Behavior, v. 110, p. 174-184, 2013. https://doi.org/10.1016/j.pbb.2013.07.003

Li, X.; Risbrough, V. B.; Cates-Gatto, C.; Kaczanowska, K.; Finn, M. G.; Roberts, A. J.; Markou, A. Neuropharmacology comparison of the effects of the GABA B receptor positive modulator BHF177 and the GABA B receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice. Neuropharmacology, v. 70, p. 156-167, 2013. https://doi.org/10.1016/j.neuropharm.2013.01.018

Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology, v. 62, no. 1, p. 42-53, 2012. https://doi.org/10.1016/j.neuropharm.2011.08.040

Mombereau, C.; Kaupmann, K.; Gassmann, M.; Bettler, B.; Van Der Putten, H.; Cryan, J. F. Altered anxiety and depression-related behavior in mice lacking GABA B(2) receptor subunits. NeuroReport, v. 16, no. 3, p. 307-310, 2005.

Rajkowska, G.; Miguel-Hidalgo, J. J.; Wei, J.; Dilley, G.; Pittman, S. D.; Meltzer, H. Y.; Overholser, J. C.; Roth, B. L.; Stockmeier, C. A. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biological Psychiatry, v. 45, no. 9, p. 1085-1098, 1999. https://doi.org/10.1016/S0006-3223(99)00041-4

Rajkowska, G.; O'Dwyer, G.; Teleki, Z.; Stockmeier, C. A.; Miguel-Hidalgo, J. J. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology, v. 32, no. 2, p. 471-482, 2007. https://doi.org/10.1038/sj.npp.1301234

Réus, G. Z.; Santos, M. A. B.; Abelaira, H. M.; Quevedo, J. Animal models of social anxiety disorder and their validity criteria. Life Sciences, v. 114, no. 1, p. 1-3, 2014. https://doi.org/10.1016/j.lfs.2014.08.002

Rudolph, U.; Mohler, H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Current Opinion in Pharmacology, v. 6, no. 1, p. 18-23, 2006. https://doi.org/10.1016/j.coph.2005.10.003

Sanacora, G.; Mason, G. F.; Rothman, D. L.; Behar, K. L.; Hyder, F.; Petroff, O. A.; Berman, R. M., Charney, D. S.; Krystal, J. H. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Archives of General Psychiatry, v. 56, no. 11, p. 1043-1047, 1999. https://doi.org/10.1001/archpsyc.56.11.1043

Sieghart, W. Structure, pharmacology, and function of GABAA receptor subtypes. Advances in Pharmacology, v. 54, no. 6, p. 231-263, 2006. https://doi.org/10.1016/S1054-3589(06)54010-4

Sinkkonen, S. T.; Hanna, M. C.; Kirkness, E. F.; Korpi, E. R. GABA(A) receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. The Journal of Neuroscience, v. 20, no. 10, p. 3588-3595, 2000. https://doi.org/10.1523/jneurosci.20-10-03588.2000

Stein, M. B.; Sareen, J. Generalized Anxiety Disorder. New England Journal of Medicine, v. 373, no. 21, p. 2059-2068, 2015. https://doi.org/10.1056/NEJMcp1502514

Varani, A. P.; Pedrón, V. T.; Machado, L. M.; Antonelli, M. C.; Bettler, B.; Balerio, G. N. Lack of GABA B receptors modifies behavioral and biochemical alterations induced by precipitated nicotine withdrawal. Neuropharmacology, v. 90, p. 90-101, 2015. https://doi.org/10.1016/j.neuropharm.2014.11.013