Vol. 5, No. 9, p. 85-93 - Apr. 30, 2018
Pyropia acanthophora var. brasiliensis E. C. Oliveira and Coll (Rhodophyta: Bangiales) cultivated in seawater under laboratory conditions favors the production of economically important secondary metabolites
Débora Tomazi Pereira
 , 
     Elisa Poltronieri Filipin
, 
     Elisa Poltronieri Filipin  , 
     Fernanda Ramlov
, 
     Fernanda Ramlov  , 
     Marcelo Maraschin
, 
     Marcelo Maraschin  , 
     Zenilda Laurita Bouzon
, 
     Zenilda Laurita Bouzon  and 
     Carmen Simioni
 and 
     Carmen Simioni 
Abstract
Pyropia represents most domesticated seaweed in the world. Therefore, we aimed to determine if cultivation of the red macroalga Pyropia acanthophora E. C. Oliveira and Coll (Rhodophyta: Bangiales) under laboratory conditions would affect the presence and concentration of secondary metabolites. To accomplish this, experiments were performed with ambient sample and acclimated sample (laboratory conditions). The conditions of the culture room were as follows: 24 oC, salinity of 35‰, constant aeration, irradiance of 80 μmol.photons.m-2.s-1 and photoperiod of 12 h, for 7 days. Ambient sample showed lower concentrations of allophycocyanin and phycoerythrin when compared to the acclimated sample, but phycocyanin concentration was higher in the ambient sample. Carotenoids showed higher concentrations in the acclimated sample when compared to the ambient sample. Total phenolics were insignificant, while total flavonoids were higher in the ambient sample. No pattern in the production of these secondary metabolites could be identified. On the other hand, the acclimated samples showed a greater inhibition of the free radical DPPH, indicating a higher antioxidant activity. Acclimatization under laboratory conditions, in which P. acanthophora is submerged in seawater, favors the production of economically important secondary metabolites as a result of submersion stress and changes in cultivation patterns, such as irradiance and photoperiod.
     
     Keywords
     Carotenoids; Flavonoids; Phenolics; Phycobiliproteins.
     
     DOI
     10.21472/bjbs.050909
     
     Full text
     PDF
     
     References
     Aman, R.; Carle, R.; Beifuss, U.; Schieber, A. Isolation of carotenoids from plant materials and dietary supplements 
     by high-speed counter-current chromatography. Journal of Chromatography A, v. 1074, no. 1/2, p. 99-105, 2005. 
     https://doi.org/10.1016/j.chroma.2005.03.055
     
     Aple, K.; Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review 
     of Plant Biology, v. 55, p. 373-399, 2004. https://doi.org/10.1146/annurev.arplant.55.031903.141701
     
     Borges, J. C.; Silva, M. R.; Esper, C. R.; Franceschini, P. H. Membrana plasmática de espermatozoides bovinos: 
     efeito de metabólitos do oxigênio, antioxidantes e criopreservação. Revista Brasileira 
     de Reprodução Animal, v. 35, no. 3, p. 303-314, 2011. Available from: <http://cbra.org.br/pages/publicacoes/rbra/v35n3/pag303-314.pdf>. 
     Accessed on: Feb. 23, 2018.
     
     Chamorro, G.; Salazar, M.; Araújo, K. G. L.; Santos, C. P.; Ceballos, G.; Castillo, L. F. Actualización en la 
     farmacología de Spirulina (Arthrospira), un alimento no convencional. Archivos Latinoamericanos 
     de Nutrición, v. 52, no. 3, p. 232-240, 2002. Available from: <http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222002000300002. 
     Accessed on: Feb. 23, 2018.
     
     Chan, C. X.; Zäuner, S.; Wheeler, G.; Grossman, A. R.; Prochnik, S. E.; Blouin, N. A.; Zhuang, Y.; Benning, C.; 
     Berg, G. M.; Yarish, C.; Eriksen, R. L.; Klein, A. S.; Lin, S.; Levine, I.; Brawley, S. H.; Bhattacharya, D. Analysis 
     of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous 
     sodium-coupled transport systems. Plant Physiology, v. 158, p. 2001 2012, 2012. https://doi.org/10.1104/pp.112.193896
     
     Christaki, E.; Bonos, E.; Giannenasa, I.; Florou-Paneria, P. Functional properties of carotenoids originating from 
     algae. Journal of the Science of Food and Agriculture, v. 93, no. 1, p. 5-11, 2012. https://doi.org/10.1002/jsfa.5902
     
     Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. 
     Molecules, v. 15, no. 10, p. 7313-7352, 2010. https://doi.org/10.3390/molecules15107313
     
     Edwards, P. Cultured red alga to measure pollution. Marine Pollution Bulletin, v. 3, p. 184-188, 1972.
     
     Fré, N. C.; Rech, R.; Marcílio, N. Influência da luminosidade e concentração salina na produção de 
     lipídios e carotenoides pela microalga Dunaliella tertiolecta em fotobiorreator airlift. Proceeding 
     of the X Congresso Brasileiro de Engenharia Química, 2014. Available from: <http://pdf.blucher.com.br.s3-sa-east-1.amazonaws.com/chemicalengineeringproceedings/cobeq2014/1171-20672-176720.pdf>. 
     Accessed on: Feb. 23, 2018.
     
     Ganesan, P.; Kumar, C. S.; Bhaskar, N. Antioxidant properties of methanol extract and its solvent fractions obtained 
     from selected Indian red seaweeds. Bioresource Technology, v. 99, no. 8, p. 2717-2723, 2008. https://doi.org/10.1016/j.biortech.2007.07.005
     
     Guimarães, D. H.; Boscolo, T. Determinação das propriedades reológicas da polpa de framboesa 
     amarela (Rubus imperialis) e processamento da geleia a partir da mesma. Revista Ciências Exatas e Naturais, 
     v. 15, no. 3, p. 275-287, 2014. Available from: <https://revistas.unicentro.br/index.php/RECEN/article/view/2568/2311. 
     Accessed on: Feb. 23, 2018.
     
     Israel, A.; Martinez-Goss, M.; Friedlander, M. Effect of salinity and pH on growth and agar yield of Gracilaria 
     tenuistipitata var. liui in laboratory and outdoor cultivation. Journal of Applied Phycology, 
     v. 11, no. 6, p. 543 549, 1999. https://doi.org/10.1023/A:1008141906299
     
     Kim, Y. K.; Guo, Q.; Packer, L. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology, 
     v. 172, no. 2, p. 149 156, 2002. https://doi.org/10.1016/S0300-483X(01)00585-6
     
     Kumar, M.; Kumari, P.; Gupta, V.; Reddy, C. R. K.; Jha, B. Biochemical responses of red alga Gracilaria corticata 
     (Gracilariales, Rhodophyta) to salinity induced oxidative stress. Journal of Experimental Marine Biology and Ecology, 
     v. 391, no. 1/2, p. 27 34, 2010. https://doi.org/10.1016/j.jembe.2010.06.001
     
     Kursar, T. A.; Alberte, R. S. Photosynthetic unit organization in a red alga. Plant Physiology, v. 72, no. 2, 
     p. 409-414, 1983. https://doi.org/10.1104/pp.72.2.409
     
     Lavakumar, V.; Ahamed, K. F. H.; Ravichandran, V. Anticancer and antioxidant effect of Acanthophora spicifera against 
     EAC induced carcinoma in mice. Journal of Pharmacy Research, v. 5, no. 3, p. 1503 1507, 2012. Available from: 
     <http://jprsolutions.info/newfiles/journal-file-56adabbe863f84.64946915.pdf>. 
     Accessed on: Feb. 23, 2018.
     
     Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumaya, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical factors 
     affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium 
     cruentum. Food Chemistry, v. 150, p. 400-407, 2014. https://doi.org/10.1016/j.foodchem.2013.10.113
     
     Murugan, K.; Iyer, V. V. Antioxidant and antiproliferative activities of extracts of selected red and brown seaweeds from the 
     Mandapam Coast of Tamil Nadu. Journal of Food Biochemistry, v. 38, p. 92-101, 2014. https://doi.org/10.1111/jfbc.12029
     
     Ouriques, L. C.; Pereira, D. T.; Simioni, C.; Ramlov, F.; Maraschin, M.; Bouzon, Z. L.; Schmidt, E. C. Physiological, morphological 
     and ultrastructural responses to exposure to ultraviolet radiation in the red alga Aglaothamnion uruguayense (W. R. Taylor). 
     Brazilian Jounal of Botany, v. 40, no. 3, p. 783-791, 2017. https://doi.org/10.1007/s40415-017-0372-5
     
     Papp, I.; Apáti, P.; Andrasek, V.; Blázovics, A.; Balázs, A.; Kursinszki, L.; Kite, G. C.; Houghton, P. J.; 
     Kéry, A. LC-MS analysis of antioxidant plant phenoloids. Chromatographia, v. 60, suppl. 1, p. S93-S100, 2004. 
     https://doi.org/10.1365/s10337-004-0348-z
     
     Parmar, A.; Singh, N. K.; Dhoke, R.; Madamwar, D. Influence of light on phycobiliprotein production in three marine cyanobacterial 
     cultures. Acta Physiologie Plantarum, v. 35, no. 6, p. 1817-1826, 2013. https://doi.org/10.1007/s11738-013-1219-8
     
     Ramlov, F. Variação sazonal dos carotenóides e compostos fenólicos e estudos fisiológicos 
     em diferentes estádios reprodutivos de Gracilaria domingensis (Kütz.) Sonder ex Dickie (Gracilariales, 
     Rhodophyta). São Paulo: Instituto de Botânica, 2010 (Thesis of doctorat).
     
     Ramlov, F.; Souza, J. M. C.; Faria, A. V. F.; Maraschin, M.; Horta, P. A.; Yokoya, N. S. Growth and accumulation of carotenoids 
     and nitrogen compounds in Gracilaria domingensis (Kutz.) Sonder ex Dickie (Gracilariales, Rhodophyta) cultured 
     under different irradiance and nutrient levels. Revista Brasileira de Farmacognosia, v. 21, n. 2, p. 255-261, 2011. 
     https://doi.org/10.1590/S0102-695X2011005000081
     
     Rice-Evans, C.; Miller, N. J.; Bolwell, P. G.; Bramley, P. M.; Pridham, J. B. The relative antioxidant activities of 
     plant-derived polyphenolic flavonoids. Free Radical Research, v. 22, no. 4, p. 375-383, 1995. https://doi.org/10.3109/10715769509145649
     
     Rodríguez-Sánchez, R.; Ortiz-Butrón, R.; Blas-Valdivia, V.; Hernández-García, A.; Cano-Europa, 
     E. Phycobiliproteins or C phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative 
     stress and renal damage. Food Chemistry, v. 135, no. 4, p. 2359-2365, 2012. https://doi.org/10.1016/j.foodchem.2012.07.063
     
     Romay, Ch.; González, R.; Ledón, N.; Remirez, D.; Rimbau V. C-phycocyanin: a biliprotein with antioxidant, 
     anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, v. 4, no. 3, p. 207-216, 2003. 
     https://doi.org/10.2174/1389203033487216
     
     Schweikert, K.; Sutherland, J. E. S.; Hurd, C. L.; Burritt, D. J. UV-B radiation induces changes in polyamine metabolism 
     in the red seaweed Porphyra cinnamomea. Plant Growth Regulation, v. 65, p. 389-399, 2011. https://doi.org/10.1007/s10725-011-9614-x
     
     Seenivasan, R.; Rekha, M.; Indu, H.; Geetha, S. Antibacterial activity and phytochemical analysis of selected seaweeds 
     from Mandapam Coast, India. Journal of Applied Pharmaceutical Science, v. 2, p. 159-169, 2012. https://doi.org/10.7324/JAPS.2012.21030
     
     Uenojo, M.; Maróstica, M. R.; Pastore, G. M. Carotenóides: propriedades, aplicações e 
     biotransformação para formação de compostos de aroma. Química Nova, 
     v. 30, p. 616-622, 2007. https://doi.org/10.1590/S0100-40422007000300022
     
     Verpoorte, R.; van der Heijden, R.; Memelink, J. Engineering the plant cell factory for secondary metabolite production. 
     Transgenic Research, v. 9, no. 4/5, p. 323-343, 2000. https://doi.org/10.1023/A:1008966404981
     
     Waterman, P. G.; Mole, S. Analysis of phenolic plant metabolites. Oxford: Blackwell Scientific Publications, 1994.
     
     Zacarias, A. A.; Moresco, H. H.; Horst, H.; Brighente, I. M. C.; Marques, M. C. A.; Pizzollati, M. G. Determinação 
     do teor de fenólicos e flavonoides no extrato e frações de Tabebuia heptaphylla. Proceeding of the 
     30a Reunião Anual da Sociedade Brasileira de Química, 2007. Available from: <https://sec.sbq.org.br/cdrom/30ra/resumos/T1086-1.pdf>. 
     Accessed on: Feb. 22, 2018.
     
     Zhang, Q.; Yu, P.; Li, Z.; Zhang, H.; Xu, Z.; Li, P. Antioxidant activities of sulfated polysaccharide fractions from 
     Porphyra haitanesis. Journal of Applied Phycology, v. 15, no. 4, p. 305-310, 2003. https://doi.org/10.1023/A:1025137728525
     
     Zhou, C.; Yu, X.; Zhang, Y.; He, R.; Ma, H. Ultrasonic degradation, purification and analysis of structure and antioxidant 
     activity of polysaccharide from Porphyra yezoensis Udea. Carbohydrate Polymers, v. 87, no. 3, p. 2046-2051, 
     2012. https://doi.org/10.1016/j.carbpol.2011.10.026
     
     
     
 
        




