Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 5, no. 9 (2018) Pereira


Vol. 5, No. 9, p. 85-93 - Apr. 30, 2018


Pyropia acanthophora var. brasiliensis E. C. Oliveira and Coll (Rhodophyta: Bangiales) cultivated in seawater under laboratory conditions favors the production of economically important secondary metabolites

Débora Tomazi Pereira , Elisa Poltronieri Filipin , Fernanda Ramlov , Marcelo Maraschin , Zenilda Laurita Bouzon and Carmen Simioni

Pyropia represents most domesticated seaweed in the world. Therefore, we aimed to determine if cultivation of the red macroalga Pyropia acanthophora E. C. Oliveira and Coll (Rhodophyta: Bangiales) under laboratory conditions would affect the presence and concentration of secondary metabolites. To accomplish this, experiments were performed with ambient sample and acclimated sample (laboratory conditions). The conditions of the culture room were as follows: 24 oC, salinity of 35‰, constant aeration, irradiance of 80 μmol.photons.m-2.s-1 and photoperiod of 12 h, for 7 days. Ambient sample showed lower concentrations of allophycocyanin and phycoerythrin when compared to the acclimated sample, but phycocyanin concentration was higher in the ambient sample. Carotenoids showed higher concentrations in the acclimated sample when compared to the ambient sample. Total phenolics were insignificant, while total flavonoids were higher in the ambient sample. No pattern in the production of these secondary metabolites could be identified. On the other hand, the acclimated samples showed a greater inhibition of the free radical DPPH, indicating a higher antioxidant activity. Acclimatization under laboratory conditions, in which P. acanthophora is submerged in seawater, favors the production of economically important secondary metabolites as a result of submersion stress and changes in cultivation patterns, such as irradiance and photoperiod.

Carotenoids; Flavonoids; Phenolics; Phycobiliproteins.


Full text

Aman, R.; Carle, R.; Beifuss, U.; Schieber, A. Isolation of carotenoids from plant materials and dietary supplements by high-speed counter-current chromatography. Journal of Chromatography A, v. 1074, no. 1/2, p. 99-105, 2005.

Aple, K.; Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, v. 55, p. 373-399, 2004.

Borges, J. C.; Silva, M. R.; Esper, C. R.; Franceschini, P. H. Membrana plasmática de espermatozoides bovinos: efeito de metabólitos do oxigênio, antioxidantes e criopreservação. Revista Brasileira de Reprodução Animal, v. 35, no. 3, p. 303-314, 2011. Available from: <>. Accessed on: Feb. 23, 2018.

Chamorro, G.; Salazar, M.; Araújo, K. G. L.; Santos, C. P.; Ceballos, G.; Castillo, L. F. Actualización en la farmacología de Spirulina (Arthrospira), un alimento no convencional. Archivos Latinoamericanos de Nutrición, v. 52, no. 3, p. 232-240, 2002. Available from: < Accessed on: Feb. 23, 2018.

Chan, C. X.; Zäuner, S.; Wheeler, G.; Grossman, A. R.; Prochnik, S. E.; Blouin, N. A.; Zhuang, Y.; Benning, C.; Berg, G. M.; Yarish, C.; Eriksen, R. L.; Klein, A. S.; Lin, S.; Levine, I.; Brawley, S. H.; Bhattacharya, D. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiology, v. 158, p. 2001 2012, 2012.

Christaki, E.; Bonos, E.; Giannenasa, I.; Florou-Paneria, P. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture, v. 93, no. 1, p. 5-11, 2012.

Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, v. 15, no. 10, p. 7313-7352, 2010.

Edwards, P. Cultured red alga to measure pollution. Marine Pollution Bulletin, v. 3, p. 184-188, 1972.

Fré, N. C.; Rech, R.; Marcílio, N. Influência da luminosidade e concentração salina na produção de lipídios e carotenoides pela microalga Dunaliella tertiolecta em fotobiorreator airlift. Proceeding of the X Congresso Brasileiro de Engenharia Química, 2014. Available from: <>. Accessed on: Feb. 23, 2018.

Ganesan, P.; Kumar, C. S.; Bhaskar, N. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresource Technology, v. 99, no. 8, p. 2717-2723, 2008.

Guimarães, D. H.; Boscolo, T. Determinação das propriedades reológicas da polpa de framboesa amarela (Rubus imperialis) e processamento da geleia a partir da mesma. Revista Ciências Exatas e Naturais, v. 15, no. 3, p. 275-287, 2014. Available from: < Accessed on: Feb. 23, 2018.

Israel, A.; Martinez-Goss, M.; Friedlander, M. Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. Journal of Applied Phycology, v. 11, no. 6, p. 543 549, 1999.

Kim, Y. K.; Guo, Q.; Packer, L. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology, v. 172, no. 2, p. 149 156, 2002.

Kumar, M.; Kumari, P.; Gupta, V.; Reddy, C. R. K.; Jha, B. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. Journal of Experimental Marine Biology and Ecology, v. 391, no. 1/2, p. 27 34, 2010.

Kursar, T. A.; Alberte, R. S. Photosynthetic unit organization in a red alga. Plant Physiology, v. 72, no. 2, p. 409-414, 1983.

Lavakumar, V.; Ahamed, K. F. H.; Ravichandran, V. Anticancer and antioxidant effect of Acanthophora spicifera against EAC induced carcinoma in mice. Journal of Pharmacy Research, v. 5, no. 3, p. 1503 1507, 2012. Available from: <>. Accessed on: Feb. 23, 2018.

Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumaya, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chemistry, v. 150, p. 400-407, 2014.

Murugan, K.; Iyer, V. V. Antioxidant and antiproliferative activities of extracts of selected red and brown seaweeds from the Mandapam Coast of Tamil Nadu. Journal of Food Biochemistry, v. 38, p. 92-101, 2014.

Ouriques, L. C.; Pereira, D. T.; Simioni, C.; Ramlov, F.; Maraschin, M.; Bouzon, Z. L.; Schmidt, E. C. Physiological, morphological and ultrastructural responses to exposure to ultraviolet radiation in the red alga Aglaothamnion uruguayense (W. R. Taylor). Brazilian Jounal of Botany, v. 40, no. 3, p. 783-791, 2017.

Papp, I.; Apáti, P.; Andrasek, V.; Blázovics, A.; Balázs, A.; Kursinszki, L.; Kite, G. C.; Houghton, P. J.; Kéry, A. LC-MS analysis of antioxidant plant phenoloids. Chromatographia, v. 60, suppl. 1, p. S93-S100, 2004.

Parmar, A.; Singh, N. K.; Dhoke, R.; Madamwar, D. Influence of light on phycobiliprotein production in three marine cyanobacterial cultures. Acta Physiologie Plantarum, v. 35, no. 6, p. 1817-1826, 2013.

Ramlov, F. Variação sazonal dos carotenóides e compostos fenólicos e estudos fisiológicos em diferentes estádios reprodutivos de Gracilaria domingensis (Kütz.) Sonder ex Dickie (Gracilariales, Rhodophyta). São Paulo: Instituto de Botânica, 2010 (Thesis of doctorat).

Ramlov, F.; Souza, J. M. C.; Faria, A. V. F.; Maraschin, M.; Horta, P. A.; Yokoya, N. S. Growth and accumulation of carotenoids and nitrogen compounds in Gracilaria domingensis (Kutz.) Sonder ex Dickie (Gracilariales, Rhodophyta) cultured under different irradiance and nutrient levels. Revista Brasileira de Farmacognosia, v. 21, n. 2, p. 255-261, 2011.

Rice-Evans, C.; Miller, N. J.; Bolwell, P. G.; Bramley, P. M.; Pridham, J. B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, v. 22, no. 4, p. 375-383, 1995.

Rodríguez-Sánchez, R.; Ortiz-Butrón, R.; Blas-Valdivia, V.; Hernández-García, A.; Cano-Europa, E. Phycobiliproteins or C phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chemistry, v. 135, no. 4, p. 2359-2365, 2012.

Romay, Ch.; González, R.; Ledón, N.; Remirez, D.; Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, v. 4, no. 3, p. 207-216, 2003.

Schweikert, K.; Sutherland, J. E. S.; Hurd, C. L.; Burritt, D. J. UV-B radiation induces changes in polyamine metabolism in the red seaweed Porphyra cinnamomea. Plant Growth Regulation, v. 65, p. 389-399, 2011.

Seenivasan, R.; Rekha, M.; Indu, H.; Geetha, S. Antibacterial activity and phytochemical analysis of selected seaweeds from Mandapam Coast, India. Journal of Applied Pharmaceutical Science, v. 2, p. 159-169, 2012.

Uenojo, M.; Maróstica, M. R.; Pastore, G. M. Carotenóides: propriedades, aplicações e biotransformação para formação de compostos de aroma. Química Nova, v. 30, p. 616-622, 2007.

Verpoorte, R.; van der Heijden, R.; Memelink, J. Engineering the plant cell factory for secondary metabolite production. Transgenic Research, v. 9, no. 4/5, p. 323-343, 2000.

Waterman, P. G.; Mole, S. Analysis of phenolic plant metabolites. Oxford: Blackwell Scientific Publications, 1994.

Zacarias, A. A.; Moresco, H. H.; Horst, H.; Brighente, I. M. C.; Marques, M. C. A.; Pizzollati, M. G. Determinação do teor de fenólicos e flavonoides no extrato e frações de Tabebuia heptaphylla. Proceeding of the 30a Reunião Anual da Sociedade Brasileira de Química, 2007. Available from: <>. Accessed on: Feb. 22, 2018.

Zhang, Q.; Yu, P.; Li, Z.; Zhang, H.; Xu, Z.; Li, P. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. Journal of Applied Phycology, v. 15, no. 4, p. 305-310, 2003.

Zhou, C.; Yu, X.; Zhang, Y.; He, R.; Ma, H. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydrate Polymers, v. 87, no. 3, p. 2046-2051, 2012.