Vol. 5, No. 9, p. 57-68 - Apr. 30, 2018
Lipases and biosurfactants production by the newly isolated Burkholderia sp.
Laís Campos Teixeira de Carvalho-Gonçalves


Abstract
Lipases and biosurfactants are biocompounds produced by microorganisms involved in the metabolism of oily substrates. In this way, our study aimed to evaluate these molecules production by bacteria isolated from contaminated soil with waste vegetable oil and evaluate the optimal culture conditions for lipase production using the response surface methodology. The lipolytic activity was tested on tributyrin agar and rhodamine B agar with olive or soybean oil. All 66 isolates of bacteria were positive on tributyrin medium, while the percentage of lipolytic bacteria on rhodamine B medium varied from 31 (soybean oil, pH 6.0) to 38 (olive oil, pH 7.0 and 8.0; soybean oil, pH 8.0). The oil-spreading technique revealed that all isolates produced biosurfactants and oil emulsification and hemolytic activity tests detected biosurfactants in 60% and 88% of isolates, respectively. Lipolytic activity and biomass value varied de 8.7 to 12.4 U/mL and 2.5 to 4.04 mg/mL, respectively, in nutrient broth with olive oil medium. Six isolates with higher lipase activity were identified as Burkholderia sp., according to phylogenetic analysis based 16S rRNA sequences. Only Burkholderia sp. O19 strain produced rhamnolipids among bacteria studied. The surface response methodology revealed that the production of lipases by Burkholderia sp. O19 occurs in a wide range of pH and temperature with maximum response achieved at pH 8.5 and 65 oC (18.7 U/mL). The results obtained in this study are relevant as they show the simultaneous production of two biocompounds with broad industrial applications.
Keywords
Bacteria; Biosurfactants; Lipase; Soil.
DOI
10.21472/bjbs.050906
Full text
PDF
References
Bhosale, H.; Shaheen, U.; Kadam, T. Characterization of a hyperthermostable alkaline lipase from Bacillus sonorensis 4R. Enzyme
Research, v. 2016, p. 1-10, 2016. https://doi.org/10.1155/2016/4170684
Ciafardini, G.; Zullo, B. A.; Iride, A. Lipase production by yeasts from extra virgin olive oil. Food Microbiology, v. 23,
p. 60-67, 2006. https://doi.org/10.1016/j.fm.2005.01.009
Ciccillo, F.; Fiore, A.; Bevivino, A.; Dalmastri, C.; Tabacchioni, S.; Chiarini, L. Effects of two different application methods
of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environmental Microbiology,
v. 4, p. 238-245, 2002. https://doi.org/10.1046/j.1462-2920.2002.00291.x
Colla, L. M.; Rizzardi, J.; Pinto, M. H., Reinehr, C. O.; Bertolin, T. E.; Costa, J. A. V. Simultaneous production of lipases
and biosurfactants by submerged and solid-state bioprocess. Bioresource Technology, v. 101, p. 8308-8314, 2010.
https://doi.org/10.1016/j.biortech.2010.05.086
Das, M.; Das, S. K.; Mukherjee, R. K. Surface active properties of the culture filtrates of a Micrococcus species grown on
n-alkenes and sugars. Bioresource Technololy, v. 63, p. 231-235, 1998. https://doi.org/10.1016/S0960-8524(97)00133-8.22
Franzetti, A.; Gandolfi, I.; Raimondi, C.; Bestetti, G.; Banat, I. M.; Smyth, T. J. P.; Papacchini, M.; Cavallo, M.; Fracchia, L.
Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus
7bCT5. Bioresource Technology, v. 108, p. 245-251, 2012. https://doi.org/10.1016/j.biortech.2012.01.005
Geys, R.; Soetaert, W.; Bogaert, I. V. Biotechnological opportunities in biosurfactant production. Current Opinion of Biotechnology,
v. 30, p. 66-72, 2014. https://doi.org/10.1016/j.copbio.2014.06.002
Gopinath, S. C. B.; Anbu, P.; Lakshmipriya, T.; Hilda, A. Strategies to characterize fungal lipases for applications in medicine and
dairy industry. BioMed Research International, v. 2013, p. 1-10, 2013. https://doi.org/10.1155/2013/154549
Gudiña, E. J.; Teixeira, J. A.; Rodrigues, L. R. Biosurfactants produced by marine microorganisms with therapeutic applications.
Marine Drugs, v. 14, No. 2, 38, p. 1-15, 2016. https://doi.org/10.3390/md14020038
Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Applied of
Microbiology and Biotechnology, v. 64, p. 763-781, 2004. https://doi.org/10.1007/s00253-004-1568-8
Gupta, R.; Kumari, A.; Syal, P.; Singh, Y. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology
and cellular physiology. Progress in Lipid Research, v. 57, p. 40-54, 2015. https://doi.org/10.1016/j.plipres.2014.12.001
Hasan, F.; Shah, A. A.; Hameed, A. Industrial applications of microbial lipases. Enzyme Microbiology and Technology, v. 39,
p. 235-251, 2006. https://doi.org/10.1016/j.enzmictec.2005.10.016
Hörmann, B.; Müller, M. M.; Syldatk, M.; Hausmann, R. Rhamnolipid production by Burkholderia plantarii DSM 9509T.
European Journal of Lipid Science and Technology, v. 112, No. 6, p. 674-680, 2010. https://doi.org/10.1002/ejlt.201000030
Irorere, V. U.; Tripathi, L.; Marchant, R.; McClean, S.; Banat, I. M. Microbial rhamnolipid production: a critical re-evaluation of
published data and suggested future publication criteria. Applied Microbiology and Biotechnology, v. 101, p. 3941-3951, 2017.
https://doi.org/10.1007/s00253-017-8262-0
Kim, E. K.; Jang, W. H.; Ko, J. H.; Kang, J. S.; Noh, M. J.; Yoo, O. J. Lipase and its modulator from Pseudomonas sp. strain
KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the
modulator. Journal of Bacteriology, v. 183, p. 5937-5941, 2001. https://doi.org/10.1128/JB.183.20.5937-5941.2001
Ko, W. H.; Wang, I. T.; Ann, P. J. A simple method for detection of lipolytic microorganisms in soils. Soil Biology and
Biochemistry, v. 37, p. 597-599, 2005. https://doi.org/10.1016/j.soilbio.2004.09.006
Kouker, G.; Jaeger, K. E. Specific and sensitive plate assay for bacterial lipases. Applied Environmental and Microbiology,
v. 53, p. 211-213, 1987.
Liu, C. H.; Lu, W. B.; Chang, J. S. Optimizing lipase production of Burkholderia sp. by response surface methodology.
Process Biochemistry, v. 41, p. 1940-1944, 2006. https://doi.org/10.1016/j.procbio.2006.04.013
Lotfabad, T. B.; Shourian, M.; Roostaazad, R.; Najafabadi, A. R.; Adelzadeh, M. R.; Noghabi, K. A. An efficient
biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south
of Iran. Colloids Surfaces B: Biointerfaces, v. 69, No. 2, p. 183-193, 2009. https://doi.org/10.1016/j.colsurfb.2008.11.018
Lu, Y.; Lu, F.; Wang, X.; Bie, X.; Sun, H.; Wuyundalai; Lu, Z. Identification of bacteria producing a thermophilic
lipase with positional non-specificity and characterization of the lipase. Annals of Microbiology, v. 59,
p. 565-571, 2009. https://doi.org/10.1007/BF03175147
Ma, Q. X.; Sun, S.; Gong, S.; Zhang, J. Screening and identification of a highly lipolytic bacterial strain from
barbecue sites in Hainan and characterization of its lipase. Annals of Microbiology, v. 60, p. 429-437, 2010.
https://doi.org/10.1007/s13213-010-0060-1
Morikawa, M.; Hirata, Y.; Imanaka, T. A study on the structure-function relationship of the lipopeptide biosurfactants.
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1488, p. 211-218, 2000.
https://doi.org/10.1016/S1388-1981(00)00124-4
Moran, A. C.; Martinez, M. A.; Sineriz, F. Quantification of surfactin in culture supernatant by hemolytic activity.
Biotechnology Letters, v. 24, p. 177-180, 2002. https://doi.org/10.1023/A:1014140820207
Paula, A. V.; Barboza, J. C. S.; Castro, H. F. Study of the influence of solvent, carbohydrate and fatty acid in the
enzymatic synthesis of sugar esters by lipases. Quimica Nova, v. 28, p. 792-796, 2005. https://doi.org/10.1590/S0100-40422005000500011
Peil, G. H. S.; Kuss, A. V.; Rave, A. F. G.; Villarreal, J. P. V.; Hernandes, Y. M. L.; Nascente, P. S. Bioprospecting
of lipolytic microorganisms obtained from industrial effluents. Anais da Academia Brasileira de Ciências,
v. 88, p. 1769-1779, 2016. https://doi.org/10.1590/0001-3765201620150550
Ramette, A.; Lipuma, J. J.; Tiedje, J. M. Species abundance and diversity of Burkholderia cepacia complex in the
environment. Applied Environmental and Microbiology, v. 71, p. 1193-1201, 2005. https://doi.org/10.1128/AEM.71.3.1193-1201.2005
Rehm, S.; Trodler, P.; Pleiss, J. Solvent-induced lid opening in lipases: a molecular dynamics study. Protein Science,
v. 19, p. 2122-2130, 2010. https://doi.org/10.1002/pro.493
Shaini, V. P.; Jayasree, S. Isolation and characterization of lipase producing bacteria from windrow compost. International
Journal of Current Microbiology and Applied Sciences, v. 5, p. 926-933, 2016. https://doi.org/10.20546/ijcmas.2016.505.097
Siegmund, I.; Wagner, F. New method for detecting rhamnolipids excreted by Pseudomonas species grown on mineral agar.
Biotechnology Letters, v. 5, p. 265-268, 1991. https://doi.org/10.1007/bf02438660
Stuer, W.; Jaeger, K. E.; Winkler, U. K. Purification of extracellular lipase from Pseudomonas aeruginosa. Journal
of Bacteriology, v. 168, no. 3, p. 1070-1074, 1986. https://doi.org/10.1128/jb.168.3.1070-1074.1986
Yang, J.; Guo, D.; Yan, Y. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant
lipase from Burkholderia cepacia strain G63. Journal of Molecular Catalysis B: Enzymatic, v. 45, p. 91-96, 2007.
https://doi.org/10.1016/j.molcatb.2006.12.007
Zafar, S.; Shafiq, A.; Nadeem, S. G.; Hakim, S. T. Isolation and preliminary screening of biosurfactant producing bacteria
from oil contaminated soil. Brazilian Journal of Biological Sciences, v. 3, p. 285-292, 2016. https://doi.org/10.21472/bjbs.030605
Zarinviarsagh, M.; Ebrahimipour, G.; Sadeghi, H. Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101
isolated by washing powder for detergent application. Lipids in Health and Disease, v. 16, p.177-189, 2017.
https://doi.org/10.1186/s12944-017-0565-8