Vol. 5, No. 9, p. 13-24 - Apr. 30, 2018
Angiogenic responses in the pregnant mouse uterus under uNK cell deletion and hypoxia
Eliana Mara Oliveira Lippe

Abstract
Inadequate uterine vascular remodeling is associated with pregnancy complication. Pregnancy specific uterine Natural Killer (uNK) cells produce angiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide (NO) and interferon-γ (IFNγ), but hypoxic effects of uNK cell functions are unknown. Here, we investigated the effects of hypoxia on murine uNK cell driven vascular remodeling and on pregnancy outcome. At gestational day (gd) 7.5, normal CD1 mice and genetically-modified IL-15-/- mice that lack uNK cells were exposed to 48 h of 420 Torr hypoxia. Pregnancies were then assessed at gestation day (gd) 9.5 for decidual gene and protein expression, histopathology or litter size at birth. Hypoxia delayed CD1 fetal development, but term deliveries occurred, with the exception in IL-15-/- uNK deficient mice. VEGF protein and gene expressions were down-regulated, but not abrogate in the uNK deficient mice, suggesting an alternative source of this angiogenic factor independent of uNK cell. High eNOS/iNOS expression seems to be uterine compensatory response in the uNK deficient mice and it is probably by increasing NO release to stimulate local angiogenesis. The reduced successful pregnancy outcome is not related to uNK cell cytotoxic activity. Otherwise, the high incidence of pregnancy failure of IL-15-/- animals confirmed the benefit of uNK cells in the homeostasis of pregnant uteri.
Keywords
Angiogenesis; Hypoxia; uNK cells; Uterine plasticity.
DOI
10.21472/bjbs.050902
Full text
PDF
References
Ain, R.; Tash, J. S.; Soares, M. J. Prolactin-like protein-A is a functional modulator of natural killer cells at
the maternal-fetal interface. Molecular and Cellular Endocrinology, v. 204, no. 1/2, p. 65-74, 2003.
https://doi.org/10.1016/S0303-7207(03)00125-4
Alecsandru, D.; Garcia-Velasco, J. A. Why natural killer cells are not enough: a further understanding of killer
immunoglobulin-like receptor and human leukocyte antigen. Fertilily and Sterility, v. 107, no. 6,
p. 1273-1278, 2017. https://doi.org/10.1016/j.fertnstert.2017.04.018
Ashkar, A. A.; Black, G. P.; Wei, Q.; He, H.; Liang, L.; Head, J. R.; Croy, B. A. Assessment of requirements for
IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. The Journal
of Immunology, v. 171, no. 6, p. 2937-2944, 2003. https://doi.org/10.4049/jimmunol.171.6.2937
Avagliano, L.; Bulfamante, G. P.; Morabito, A.; Marconi, A. M. Abnormal spiral artery reodeling in the decidual
segment during pregnancy: from histology to clinical correlation. Journal of Clinical Pathology, v. 64,
no. 12, p. 1064-1068, 2011. https://doi.org/10.1136/jclinpath-2011-200092
Burton, G. J.; Charnock-Jones, D. S.; Jauniaux, E. Regulation of vascular growth and function in the human placenta.
Reproduction, v. 138, no. 6, p. 895-902, 2009. https://doi.org/10.1530/REP-09-0092
Chen, Z.; Zhang, J.; Hatta, K.; Lima, P. D. A.; Yadi, H.; Colucci, F.; Yamada, A. T.; Croy, B. A. DBA-lectin reactivity
defines mouse uterine natural killer cell subsets with biased gene expression. Biology of Reproduction, v. 87,
no. 4, p. 1-9, 2012. https://doi.org/10.1095/biolreprod.112.102293
Chen, D. B.; Feng, L.; Hodges, J. K.; Lechuga, T. J.; Zhang, H. Human trophoblast-derived hydrogen sulfide stimulates
placental artery endothelial cell angiogenesis. Biology of Reproduction, v. 97, p. 478-489, 2017. https://doi.org/10.1093/biolre/iox105
Croy, B. A.; Esadeg, S.; Chantakru S.; Van den Heuvel, M.; Paffaro Jr., V. A.; He, H.; Black, G. P.; Ashkar, A. A.;
Kiso, Y.; Zhang, J. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions
with decidual spiral arteries and homing of their precursors to the uterus. Journal of Reproductive Immunology,
v. 59, no. 2, p. 175-191, 2003. https://doi.org/10.1016/S0165-0378(03)00046-9
Croy, B. A.; Zhang, J.; Tayade, C.; Colucci, F.; Yadi, H.; Yamada, A. T. Analysis of uterine natural killer cells in mice.
Methods in Molecular Biology, v. 612, p. 465-503, 2010. https://doi.org/10.1007/978-1-60761-362-6_31
Deng, Q.; Yin, N.; Chen, Y.; Shan, N.; Liu, X.; Qi, N. Downregulated N acetylglucosaminyl-transferase III is involved in
attenuating trophoblast migration and invasion under hypoxia-reoxygenation condition. The Journal of Maternal-Fetal
& Neonatal Medicine, v. 21, p. 1-7, 2018. https://doi.org/10.1080/14767058.2018.1438392
Fortis, M. F.; Fraga, L. R.; Boquett, J. A.; Kowalski, T. W.; Dutra, C. G.; Gonçalves, R. O.; Vianna, F. S. L.;
Schuler-Faccini, L.; Sanseverino, M. T. V. Angiogensis and oxidative stress-related gene variants in recurrent
pregnancy loss. Reproduction, Fertility and Development, v. 30, no. 3, p. 498-506, 2018. https://doi.org/10.1071/RD17117
Franasiak, J. M.; Scott, R. T. Contribution of immunology to implantation failure of euploid embryos. Fertilily
and Sterility, v. 107, no. 6, p. 1279-1283, 2017. https://doi.org/10.1016/j.fertnstert.2017.04.019
Frérat, F.; Lobysheva, I.; Gallez, B.; Dessy, C.; Feron O. Vascular caveolin deficiency supports the angiogenic
effects of nitrite, a major end product of nitric oxide metabolism in tumors. Molecular Cancer Research, v. 7,
no. 7, p. 1056-1063, 2009. https://doi.org/10.1158/1541-7786.MCR-08-0388
Fujita, D.; Tanabe, A.; Sekijima, T.; Soen, H.; Narahara, K.; Yamashita, Y.; Terai, Y.; Kamegai, H.; Ohmichi, M. Role
of extracellular signal-regulated kinase and AKT cascades in regulating hypoxia-induced angiogenic factors produced
by a trophoblast-derived cell line. Journal of Endocrinology, v. 206, p. 131-140, 2010. https://doi.org/10.1677/JOE-10-0027
Gomes, S. Z.; Lorenzon, A. R.; Vieira, J. S.; Rocha, C. R. R.; Bandeira, C.; Hoshida, M.; Lopes, L. R.; Bevilacqua, E.
Expression of NADPH oxidase by trophoblast cells: Potential implications for the postimplanting mouse embryo. Biology
of Reproduction, v. 86, no. 2, p. 1-11, 2012. https://doi.org/10.1095/biolreprod.111.094748
González, I. T.; Barrientos, G.; Freitag, N.; Otto, T.; Thijssen, V. L.; Moschansky, P.; von Kwiatkowski, P.;
Klapp, B. F.; Winterhager, E.; Bauersachs, S.; Blois, S. M. Uterine NK cells are critical in shaping DC immunogenic
functions compatible with pregnancy progression. PLoS One, v. 7, no. 10, e46755, 2012. https://doi.org/10.1371/journal.pone.0046755
Hatta, K.; Carter, A. L.; Chen, Z.; Leno-Durán, E.; Ruiz-Ruiz, C.; Olivares, E. G.; Tse, M. Y.; Pang, S. C.;
Croy, B. A. Expression of the vasoactive proteins AT-1, AT-2, and ANP by pregnancy-induced mouse uterine natural
killer cells. Reproductive Sciences, v. 18, no. 4, p. 383-390, 2011. https://doi.org/10.1177/1933719110385136
Hempstock, J.; Jauniaux, E.; Greenwood, N.; Burton, G. J. The contribution of placental oxidative stress to early
pregnancy failure. Human Pathology, v. 34, no. 12, p. 1265-1275, 2003. https://doi.org/10.1016/j.humpath.2003.08.006
Ho-Chen, J. K.; Ain, A. R.; Wood, J. G.; Gonzalez, N. C.; Soares, M. J. Hypobaric hypoxia as a tool to study
pregnancy-dependent responses at the maternal-fetal interface. Methods in Molecular Medicine, v. 122,
p. 427-434, 2006. https://doi.org/10.1385/1-59259-989-3:427
Hunt, J. S.; Miller, L.; Vassmer, D.; Croy, B. A. Expression of the inducible nitric oxide synthase gene in
mouse uterine leukocytes and potential relationships with uterine function during pregnancy. Biology of
Reproduction, v. 57, no. 4, p. 827-836, 1997. https://doi.org/10.1095/biolreprod57.4.827
Kalkunte, S.; Boji, R.; Norris, W.; Friedman, J.; Lai, Z.; Kurtis, J.; Lim, K. H.; Padbury, J. F.; Matthiesen, L.;
Sharma, S. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an
in vitro predictive assay. The American Journal of Pathology, v. 177, no. 5, p. 2387-2398, 2010.
https://doi.org/10.2353/ajpath.2010.100475
Leno-Durán, E.; Hatta, K.; Bianco, J.; Yamada, A. T.; Ruiz-Ruiz, C.; Olivares, E. G.; Croy, B. A.
Fetal-placental hypoxia does not result from failure of spiral arterial modification in mice. Placenta,
v. 31, no. 8, p. 731-737, 2010. https://doi.org/10.1016/j.placenta.2010.06.002
Lima, P. D. A.; Croy, B. A.; Degaki, K. Y.; Tayade, C.; Yamada, A. T. Heterogeneity in composition of mouse uterine
natural killer cell granules. Journal of Leukocyte Biology, v. 92, no. 1, p. 195-204, 2012. https://doi.org/10.1189/jlb.0312136
Liu, S.; Diao, L.; Huang, C.; Li, Y.; Zeng, Y.; Kwak-Kim, J. Y. H. The role of decidual immune cells on human pregnancy.
Journal of Reproductive Immunology, v. 124, p. 44 53, 2017. https://doi.org/10.1016/j.jri.2017.10.045
Paffaro Jr., V. A.; Bizinotto, M. C.; Joazeiro, P. P.; Yamada, A. T. Subset classification of mouse uterine natural killer
cells by DBA lectin reactivity. Placenta, v. 24, no. 5, p. 479-488, 2003. https://doi.org/10.1053/plac.2002.0919
Possomato-Vieira, J. S.; Khalil, R. A. Mechanism of endothelial dysfunction in hypertensive pregnancy and preeclampsia.
Advances in Pharmacology, v. 77, p. 361-431, 2016. https://doi.org/10.1016/bs.apha.2016.04.008
Primer3Plus. Available from: <http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi>.
Accessed on: Feb. 22, 2018.
Schoots, M. H.; Gordijn, S. J.; Scherjon, S. A.; van Goor, H.; Hillebrands, J. L. Oxidative stress in placental pathology.
Placenta, in press, 2018. https://doi.org/10.1016/j.placenta.2018.03.003
Wu, X.; Wei, H.; Zhang, J.; Tian, Z. Increased uterine NK-derived IFN-gamma and TNF-alpha in C57BL/6J mice during early
gestation. Cellular & Molecular Immunology, v. 3, no. 2, p. 131-137, 2006. Available from: <http://www.cmi.ustc.edu.cn/3/2/131.pdf.
Accessed on: Feb. 22, 2018.
Zhang, J.; Chen, Z.; Smith, G. N.; Croy, B. A. Natural killer cell-triggered vascular transformation: maternal care before
birth? Cell & Mollecular Immunology, v. 8, p. 1-11, 2011. https://doi.org/10.1038/cmi.2010.38
Zamudio, S.; Kovalenko, O.; Vanderlelie, J.; Illsley, N. P.; Heller, D.; Belliappa, S.; Perkins, A. V. Chronic hypoxia in
vivo reduces placental oxidative stress. Placenta, v. 28, no. 8/9, p. 846-53, 2007. https://doi.org/10.1016/j.placenta.2006.11.010