Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 5, no. 9 (2018) Lippe

 

Vol. 5, No. 9, p. 13-24 - Apr. 30, 2018

 

Angiogenic responses in the pregnant mouse uterus under uNK cell deletion and hypoxia



Eliana Mara Oliveira Lippe

Abstract
Inadequate uterine vascular remodeling is associated with pregnancy complication. Pregnancy specific uterine Natural Killer (uNK) cells produce angiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide (NO) and interferon-γ (IFNγ), but hypoxic effects of uNK cell functions are unknown. Here, we investigated the effects of hypoxia on murine uNK cell driven vascular remodeling and on pregnancy outcome. At gestational day (gd) 7.5, normal CD1 mice and genetically-modified IL-15-/- mice that lack uNK cells were exposed to 48 h of 420 Torr hypoxia. Pregnancies were then assessed at gestation day (gd) 9.5 for decidual gene and protein expression, histopathology or litter size at birth. Hypoxia delayed CD1 fetal development, but term deliveries occurred, with the exception in IL-15-/- uNK deficient mice. VEGF protein and gene expressions were down-regulated, but not abrogate in the uNK deficient mice, suggesting an alternative source of this angiogenic factor independent of uNK cell. High eNOS/iNOS expression seems to be uterine compensatory response in the uNK deficient mice and it is probably by increasing NO release to stimulate local angiogenesis. The reduced successful pregnancy outcome is not related to uNK cell cytotoxic activity. Otherwise, the high incidence of pregnancy failure of IL-15-/- animals confirmed the benefit of uNK cells in the homeostasis of pregnant uteri.


Keywords
Angiogenesis; Hypoxia; uNK cells; Uterine plasticity.

DOI
10.21472/bjbs.050902

Full text
PDF

References
Ain, R.; Tash, J. S.; Soares, M. J. Prolactin-like protein-A is a functional modulator of natural killer cells at the maternal-fetal interface. Molecular and Cellular Endocrinology, v. 204, no. 1/2, p. 65-74, 2003. https://doi.org/10.1016/S0303-7207(03)00125-4

Alecsandru, D.; Garcia-Velasco, J. A. Why natural killer cells are not enough: a further understanding of killer immunoglobulin-like receptor and human leukocyte antigen. Fertilily and Sterility, v. 107, no. 6, p. 1273-1278, 2017. https://doi.org/10.1016/j.fertnstert.2017.04.018

Ashkar, A. A.; Black, G. P.; Wei, Q.; He, H.; Liang, L.; Head, J. R.; Croy, B. A. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. The Journal of Immunology, v. 171, no. 6, p. 2937-2944, 2003. https://doi.org/10.4049/jimmunol.171.6.2937

Avagliano, L.; Bulfamante, G. P.; Morabito, A.; Marconi, A. M. Abnormal spiral artery reodeling in the decidual segment during pregnancy: from histology to clinical correlation. Journal of Clinical Pathology, v. 64, no. 12, p. 1064-1068, 2011. https://doi.org/10.1136/jclinpath-2011-200092

Burton, G. J.; Charnock-Jones, D. S.; Jauniaux, E. Regulation of vascular growth and function in the human placenta. Reproduction, v. 138, no. 6, p. 895-902, 2009. https://doi.org/10.1530/REP-09-0092

Chen, Z.; Zhang, J.; Hatta, K.; Lima, P. D. A.; Yadi, H.; Colucci, F.; Yamada, A. T.; Croy, B. A. DBA-lectin reactivity defines mouse uterine natural killer cell subsets with biased gene expression. Biology of Reproduction, v. 87, no. 4, p. 1-9, 2012. https://doi.org/10.1095/biolreprod.112.102293

Chen, D. B.; Feng, L.; Hodges, J. K.; Lechuga, T. J.; Zhang, H. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis. Biology of Reproduction, v. 97, p. 478-489, 2017. https://doi.org/10.1093/biolre/iox105

Croy, B. A.; Esadeg, S.; Chantakru S.; Van den Heuvel, M.; Paffaro Jr., V. A.; He, H.; Black, G. P.; Ashkar, A. A.; Kiso, Y.; Zhang, J. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. Journal of Reproductive Immunology, v. 59, no. 2, p. 175-191, 2003. https://doi.org/10.1016/S0165-0378(03)00046-9

Croy, B. A.; Zhang, J.; Tayade, C.; Colucci, F.; Yadi, H.; Yamada, A. T. Analysis of uterine natural killer cells in mice. Methods in Molecular Biology, v. 612, p. 465-503, 2010. https://doi.org/10.1007/978-1-60761-362-6_31

Deng, Q.; Yin, N.; Chen, Y.; Shan, N.; Liu, X.; Qi, N. Downregulated N acetylglucosaminyl-transferase III is involved in attenuating trophoblast migration and invasion under hypoxia-reoxygenation condition. The Journal of Maternal-Fetal & Neonatal Medicine, v. 21, p. 1-7, 2018. https://doi.org/10.1080/14767058.2018.1438392

Fortis, M. F.; Fraga, L. R.; Boquett, J. A.; Kowalski, T. W.; Dutra, C. G.; Gonçalves, R. O.; Vianna, F. S. L.; Schuler-Faccini, L.; Sanseverino, M. T. V. Angiogensis and oxidative stress-related gene variants in recurrent pregnancy loss. Reproduction, Fertility and Development, v. 30, no. 3, p. 498-506, 2018. https://doi.org/10.1071/RD17117

Franasiak, J. M.; Scott, R. T. Contribution of immunology to implantation failure of euploid embryos. Fertilily and Sterility, v. 107, no. 6, p. 1279-1283, 2017. https://doi.org/10.1016/j.fertnstert.2017.04.019

Frérat, F.; Lobysheva, I.; Gallez, B.; Dessy, C.; Feron O. Vascular caveolin deficiency supports the angiogenic effects of nitrite, a major end product of nitric oxide metabolism in tumors. Molecular Cancer Research, v. 7, no. 7, p. 1056-1063, 2009. https://doi.org/10.1158/1541-7786.MCR-08-0388

Fujita, D.; Tanabe, A.; Sekijima, T.; Soen, H.; Narahara, K.; Yamashita, Y.; Terai, Y.; Kamegai, H.; Ohmichi, M. Role of extracellular signal-regulated kinase and AKT cascades in regulating hypoxia-induced angiogenic factors produced by a trophoblast-derived cell line. Journal of Endocrinology, v. 206, p. 131-140, 2010. https://doi.org/10.1677/JOE-10-0027

Gomes, S. Z.; Lorenzon, A. R.; Vieira, J. S.; Rocha, C. R. R.; Bandeira, C.; Hoshida, M.; Lopes, L. R.; Bevilacqua, E. Expression of NADPH oxidase by trophoblast cells: Potential implications for the postimplanting mouse embryo. Biology of Reproduction, v. 86, no. 2, p. 1-11, 2012. https://doi.org/10.1095/biolreprod.111.094748

González, I. T.; Barrientos, G.; Freitag, N.; Otto, T.; Thijssen, V. L.; Moschansky, P.; von Kwiatkowski, P.; Klapp, B. F.; Winterhager, E.; Bauersachs, S.; Blois, S. M. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression. PLoS One, v. 7, no. 10, e46755, 2012. https://doi.org/10.1371/journal.pone.0046755

Hatta, K.; Carter, A. L.; Chen, Z.; Leno-Durán, E.; Ruiz-Ruiz, C.; Olivares, E. G.; Tse, M. Y.; Pang, S. C.; Croy, B. A. Expression of the vasoactive proteins AT-1, AT-2, and ANP by pregnancy-induced mouse uterine natural killer cells. Reproductive Sciences, v. 18, no. 4, p. 383-390, 2011. https://doi.org/10.1177/1933719110385136

Hempstock, J.; Jauniaux, E.; Greenwood, N.; Burton, G. J. The contribution of placental oxidative stress to early pregnancy failure. Human Pathology, v. 34, no. 12, p. 1265-1275, 2003. https://doi.org/10.1016/j.humpath.2003.08.006

Ho-Chen, J. K.; Ain, A. R.; Wood, J. G.; Gonzalez, N. C.; Soares, M. J. Hypobaric hypoxia as a tool to study pregnancy-dependent responses at the maternal-fetal interface. Methods in Molecular Medicine, v. 122, p. 427-434, 2006. https://doi.org/10.1385/1-59259-989-3:427

Hunt, J. S.; Miller, L.; Vassmer, D.; Croy, B. A. Expression of the inducible nitric oxide synthase gene in mouse uterine leukocytes and potential relationships with uterine function during pregnancy. Biology of Reproduction, v. 57, no. 4, p. 827-836, 1997. https://doi.org/10.1095/biolreprod57.4.827

Kalkunte, S.; Boji, R.; Norris, W.; Friedman, J.; Lai, Z.; Kurtis, J.; Lim, K. H.; Padbury, J. F.; Matthiesen, L.; Sharma, S. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. The American Journal of Pathology, v. 177, no. 5, p. 2387-2398, 2010. https://doi.org/10.2353/ajpath.2010.100475

Leno-Durán, E.; Hatta, K.; Bianco, J.; Yamada, A. T.; Ruiz-Ruiz, C.; Olivares, E. G.; Croy, B. A. Fetal-placental hypoxia does not result from failure of spiral arterial modification in mice. Placenta, v. 31, no. 8, p. 731-737, 2010. https://doi.org/10.1016/j.placenta.2010.06.002

Lima, P. D. A.; Croy, B. A.; Degaki, K. Y.; Tayade, C.; Yamada, A. T. Heterogeneity in composition of mouse uterine natural killer cell granules. Journal of Leukocyte Biology, v. 92, no. 1, p. 195-204, 2012. https://doi.org/10.1189/jlb.0312136

Liu, S.; Diao, L.; Huang, C.; Li, Y.; Zeng, Y.; Kwak-Kim, J. Y. H. The role of decidual immune cells on human pregnancy. Journal of Reproductive Immunology, v. 124, p. 44 53, 2017. https://doi.org/10.1016/j.jri.2017.10.045

Paffaro Jr., V. A.; Bizinotto, M. C.; Joazeiro, P. P.; Yamada, A. T. Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta, v. 24, no. 5, p. 479-488, 2003. https://doi.org/10.1053/plac.2002.0919

Possomato-Vieira, J. S.; Khalil, R. A. Mechanism of endothelial dysfunction in hypertensive pregnancy and preeclampsia. Advances in Pharmacology, v. 77, p. 361-431, 2016. https://doi.org/10.1016/bs.apha.2016.04.008

Primer3Plus. Available from: <http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi>. Accessed on: Feb. 22, 2018.

Schoots, M. H.; Gordijn, S. J.; Scherjon, S. A.; van Goor, H.; Hillebrands, J. L. Oxidative stress in placental pathology. Placenta, in press, 2018. https://doi.org/10.1016/j.placenta.2018.03.003

Wu, X.; Wei, H.; Zhang, J.; Tian, Z. Increased uterine NK-derived IFN-gamma and TNF-alpha in C57BL/6J mice during early gestation. Cellular & Molecular Immunology, v. 3, no. 2, p. 131-137, 2006. Available from: <http://www.cmi.ustc.edu.cn/3/2/131.pdf. Accessed on: Feb. 22, 2018.

Zhang, J.; Chen, Z.; Smith, G. N.; Croy, B. A. Natural killer cell-triggered vascular transformation: maternal care before birth? Cell & Mollecular Immunology, v. 8, p. 1-11, 2011. https://doi.org/10.1038/cmi.2010.38

Zamudio, S.; Kovalenko, O.; Vanderlelie, J.; Illsley, N. P.; Heller, D.; Belliappa, S.; Perkins, A. V. Chronic hypoxia in vivo reduces placental oxidative stress. Placenta, v. 28, no. 8/9, p. 846-53, 2007. https://doi.org/10.1016/j.placenta.2006.11.010