Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 5, no. 11 (2018) Mukherjee


Vol. 5, No. 11, p. 799-814 - Dec. 31, 2018


Dynamics of dissolved inorganic nitrogen in bioturbated littoral surface sediments at a selected tourist destination of Northern Coastal Bay of Bengal, India: An ecologically significant case study

Abhishek Mukherjee , Sabyasachi Chakraborty , Subhajit Das and Tarun Kumar De

A case study was undertaken to observe the variations in the concentrations of the dissolved inorganic nitrogen species in the surface sediments of the littoral compartments at Bakkhali and Frasergunj situated within the single coastal stretch at the southernmost tip of West Bengal, India. Effects, if any, of the presence or absence of bioturbations on the variability of the dissolved nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen, total dissolved nitrogen and the cumulative concentration of former three variables in the beach surface sediments were also noted. On site nitrite-nitrogen was found in alternate fluctuating patterns throughout the beach zonations with gradual lowering and peaking within each zone. An evidently prominent fact was the independence of dissolved inorganic nitrogen species from bioturbatory influences in the surface sediments of wave exposed littoral environments at the study sites. That effect might become significant in a vertical profile but from the data procured it can be stated that inorganic nitrogen species concentrations in surface beach sediments are not entirely perturbed by bioturbations and are governed by many other environmental parameters. A Pearson correlation performed on the normalized data sets revealed that there existed a fairly significant correlation in between the both the beach sediments with r-values ranging from -0.97 to +0.99 among the five variables considered at 95% confidence level. ANOVA Single factor yielded values in support of the rejection of the null hypothesis.

Bakkhali; Frasergunj; Littoral zone; Stoichiometry; Inorganic nitrogen; Bay of Bengal.


Full text

Aller, R. C. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica et Cosmochimica Acta, v 44, p. 1955-1965, 1980.

APHA - American Public Health Association. Standard methods for the examination of water and wastewater. 20. ed. Baltimore, Maryland: United Book Press, 1998.

Bebout, B. M.; Paerl, H. W.; Bauer, J. E.; Canfield, D. E.; Des Marais, D. J. Nitrogen cycling in microbial mat communities: The quantitative importance of N-fixation and other sources of N for primary productivity. In: Stal, L. J.; Caumette, P. (Ed.). Microbial mats, structure, development and environmental significance. Berlin: Springer-Verlag, 1994. (NATO ASI Series). p. 267-271.

Blackburn, T. H.; Sørensen, J. Nitrogen cycling in coastal marine environments. New York: John Wiley and Sons, 1988.

Blackburn, T. H.; Henriksen, K. Nitrogen cycling in different types of sediment from Danish waters. Limnology and Oceanography, v. 28, p. 477-493, 1983.

Caffrey, J. M.; Sloth, N. P.; Kaspar, H. F.; Blackburn, T. H. Effect of organic loading on nitrification and denitrification in a marine sediment mesocosm. FEMS Microbiology Ecology, v. 12, p. 159-169, 1993.

Carpenter, E. J.; Capone, D. G. Nitrogen in the marine environment. New York: Academic Press, 1983.

Dugdale, R. C.; Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, v. 12, p. 196-206, 1967.

Glibert, P. M. Primary productivity and pelagic nitrogen cycling. In: Blackburn, T. H.; Sørensen, J. (Ed.). Nitrogen cycling in coastal marine environments. New York: John Wiley and Sons, 1988. p. 3-31.

Goldhaber, M. B.; Aller, R. C.; Cochran, J. K.; Rosenfield, J. K.; Martens, C. S.; Berner, R. A. Sulfate reduction, diffusion and bioturbation in Long Island Sound sediments: Report of the FOAM Group. American Journal of Science, v. 277, p. 193-237, 1977.

Grasshoff, K.; Ehrhardt, M.; Kremling, K. (Ed.). Methods of seawater analysis. 2. ed. Berlin: Verlag Chemie, 1983.

Hecky, R. E.; Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography, v. 33, p. 796822, 1988.

Herbert, R. A. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Ecology, v. 23, p. 563-590, 1999.

Herbert, R. A.; Nedwell, D. B. Role of environmental factors in regulating nitrate respiration in intertidal sediments. In: Revsbech, N. P.; Sørensen, J. (Ed.). Denitrification in soil and sediment. New York: Plenum Press, 1990. p. 77-90.

Hines, M. E.; Knollmeyer, S. I.; Tugel, J. B. Sulfate reduction and other sedimentary biogeochemistry in a Northern New England salt marsh. Limnology and Oceanography, v. 34, p. 578-590, 1989.

Howarth, R. W.; Marino, R.; Lane, J.; Cole, J. J. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnology and Oceanography, v. 33, p. 619-687, 1988.

Jensen, H. J.; Lomstein, E.; Sørensen, J. Benthic NH4+ and NO3- flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Marine Ecology Progress Series, v. 61, p. 87-96, 1990.

Jørgensen, B. B.; Revsbech, N. P. Oxygen uptake, bacterial distribution and carbon-nitrogen-sulfur cycling in sediments from the Baltic Sea-North Sea transition. Ophelia, v. 31, p. 51-72, 1989.

Kerner, M. Coupling of microbial fermentation and respiration processes in an intertidal mudflat of the Elbe Estuary. Limnology and Oceanography, v. 38, p. 314-330, 1993.

Klump, J. V.; Martens, C. S. Benthic nitrogen regeneration. In: Carpenter, E. J.; Capone, D. G. (Ed.). Nitrogen in marine environments. New York: Academic Press, 1983. p. 411-457.

La Roche, J. Ammonium regeneration: Its contribution to phytoplankton nitrogen requirements in a eutrophic environment. Marine Biology, v. 75, p. 231-240, 1983.

Lohse, L.; Malschaert, J. F. P.; Slomp, C. P.; Helder, W.; van Raaphorst, W. Nitrogen cycling in North Sea sediments: Interaction of denitrification and nitrification in offshore and coastal areas. Marine Ecology Progress Series, v. 101, p. 283-296, 1993.

Lomstein, B.; Blackburn, T. H. Sediment nitrogen cycling in Aarhus Bay, Denmark. Copenhagen: Miljoministeriet, 1992.

Mukherjee, A.; Das, S.; Chakraborty, S.; De, T. K. An ex situ and in vitro approach to delineate pennate diatom species with bioindicator potentials in a well mixed tropical estuarine ecosystem. Brazilian Journal of Biological Sciences, v. 3, no. 6, p. 299-317, 2016.

Paerl, H. W.; Crocker, K. M.; Prufert, L. E. Limitation of N2 fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus and organic matter availability. Limnology and Oceanography, v. 32, p. 525-536, 1987.

Sloth, N. P.; Blackburn H.; Hansen L. S.; Risgaard-Petersen, N.; Lomstein, B. A. Nitrogen cycling in sediment with different organic loading. Marine Ecology Progress Series, v. 116, p. 163170, 1995.

Smith, S. V.; Hollibraugh, J. T. Carbon-controlled nitrogen cycling in a marine 'macrocosm': An ecological scale model for managing cultural eutrophication. Marine Ecology Progress Series, v. 52, p. 103-109, 1989.

Sørensen, J.; Jørgensen, B. B.; Revsbech, N. P. A comparison of oxygen, nitrate and sulfate respiration in coastal marine sediments. Microbial Ecology