Vol. 5, No. 11, p. 657-671 - Dec. 31, 2018
Endophytic bacteria isolated from Phaseolus vulgaris produce phytases with potential for biotechnology application
Leonardo Emanuel de Oliveira Costa , Thamy Lívia Ribeiro Corrêa , Janaina Aparecida Teixeira , Elza Fernandes de Araújo and Marisa Vieira de Queiroz
Abstract
Currently, endophytic microorganisms have become a good source of different enzymes and others metabolites of industrial interest. Among a huge spectral of molecules, enzymes as phytases have been emphasized by the ability to hydrolyze the phytic acid that represents the largest storage form of inorganic phosphorus in cereals, which are the staple diet of monogastric animals such as swine and poultry. Moreover, phytic acid acts as an antinutrient by chelating divalent metal ions, and it is interesting provide phytase as an animal feed supplement for those monogastric animals. In the current study, 158 endophytic bacteria isolated from the leaves of three cultivars of Phaseolus vulgaris were assessed for the ability to produce phytase. Among them, four isolates belonging to the Pseudomonas, Stenotrophomonas, Microbacterium and Rhodococcus genera were highlighted, due their phytase production. The phytase produced by Microbacterium foliorum BAC1157 exhibited activity at 70 oC and stability in the presence of divalent cations, indicating that this phytase has a promising use in the animal feed industry. To the authors' knowledge, this is the first report on phytase production by bacteria of the Microbacterium genera.
Keywords
Endophytic bacteria; Microbacterium; Bean; Phytase activity.
DOI
10.21472/bjbs.051105
Full text
PDF
References
Anis Shobirin, M. H.; Farouk, A.; Greiner, R. Potential phytate-degrading enzyme producing bacteria isolated from
Malaysian maize plantation. African Journal of Biotechnology, v. 8, no. 15, p. 3540-3546, 2009.
Araujo, W. L.; Marcon, J.; Maccheroni, W., Jr; Van Elsas, J. D.; Van Vuurde, J. W.; Azevedo, J. L. Diversity of
endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied
and Environmental Microbiology, v. 68, p. 4906-4914, 2002. https://doi.org/10.1128/AEM.68.10.4906-4914.2002
Ariza, A.; Moroz, O. V.; Blagova, E. V.; Turkenburg, J. P.; Waterman, J.; Roberts, S. M.; Vind, J.; Sjřholm, C.;
Lassen, S. F.; Maria, L.; Glitsoe, V.; Skov, L. K.; Wilson, K. S. Degradation of phytate by the 6-phytase from
Hafnia alvei: A combined structural and solution study. PLoS ONE, 8:5, e65062, 2013. https://doi.org/10.1371/journal.pone.0065062
Berka, R. M.; Rey, M. W.; Brown, K. M.; Byun, T.; Klotz, A. V. Molecular characterization and expression of a
phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology,
v. 64, p. 4423-4427, 1998. Available from: <https://aem.asm.org/content/64/11/4423.long>.
Accessed on: Sept. 23, 2018.
Carrington, A. L.; Calcutt, N. A.; Ettlinger, C. B.; Gustafsson, T.; Tomlinson, D. R. Effects of treatment with
myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocindiabetis. European Journal
of Pharmacology, v. 237, no. 2/3, p. 257-263, 1993. https://doi.org/10.1016/0014-2999(93)90277-O
Casey, A.; Walsh G. Purification and characterization of extracellular phytase from Aspergillus niger ATCC
9142. Bioresource Technology, v. 86, p. 183-188, 2003. https://doi.org/10.1016/S0960-8524(02)00145-1
Claxson, A.; Morris, C.; Blake, D.; Siren, M.; Halliwell, B.; Gustafsson, T.; Löfkvist, B.; Bergelin, I. The
anti-inflammatory effects of D-myo-inositol-1.2,6-trisphosphate (PP56) on animal models of inflammation. Agents
and Actions, v. 29, p. 68-70, 1990.
Coelho, C. M. M.; Santos, J. C. P.; Tsai, S. M.; Vitorello, V. A. Seed phytate content and phosphorus uptake and
distribution in dry bean genotypes. Brazilian Journal of Plant Physiology, v. 14, no. 1, p. 51-58, 2002.
https://doi.org/10.1590/S1677-04202002000100007
Corrêa, T. L. R.; Queiroz, M. V.; Araújo, E. F. Cloning, recombinant expression and characterization
of a new phytase from Penicillium chrysogenum. Microbiological Research, v. 170, p. 205-212, 2015.
https://doi.org/10.1016/j.micres.2014.06.005
Costa, L. E. O.; Queiroz, M. V.; Borges, A. C.; Moraes, C. A.; Araújo, E. F. Isolation and characterization
of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal
of Microbiology, v. 43, no. 4, p. 1562-1575, 2012. https://doi.org/10.1590/S1517-83822012000400041
Greiner, R.; Haller, E.; Konietzny, U.; Jany, K.-D. Purification and characterization of a phytase from Klebsiella
terrigena. Archives of Biochemistry and Biophysics, v. 341, no. 2, p. 201-206, 1997. https://doi.org/10.1006/abbi.1997.9942
Greiner, R.; Silva, L. G.; Couri S. Purification and characterisation of an extracellular phytase from Aspergillus
niger 11T53A9. Brazilian Journal of Microbiology, v. 40, p. 795-807, 2009. https://doi.org/10.1590/S1517-83822009000400010
Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W. F.; Kloepper, J. W. Bacterial endophytes in agricultural crops. Canadian
Journal of Microbiology, v. 43, p. 895-914, 1997. https://doi.org/10.1139/m97-131
Heinonen, J. K.; Lahti, R. J. A new and convenient colorimetric determination of inorganic orthophosphate and its application
to the assay of inorganic pyrophosphatase. Analytical Biochemistry, v. 113, no. 2, p. 313-317, 1981.
https://doi.org/10.1016/0003-2697(81)90082-8
Hussin, A. S. M.; Farouk, A.; Greiner, R. Potencial phytate-degrading enzyme producing bacteria isolated from Malaysian
maize plantation. African Journal of Biotechnology, v. 8, p. 3540-3546, 2009.
Kiarie, E.; Romero, L. F.; Nyachoti, C. M. The role of added feed enzymes in promoting gut health in swine and poultry.
Nutrition Research Review, v. 26, no. 1, p. 71-88, 2013. https://doi.org/10.1017/S0954422413000048
Kim, H.; Kim, Y.; Lee, J.; Kim, K.; Kim, Y. Isolation and characterization of a phytase with improved properties from
Citrobacter braakii. Biotechnology Letters, v. 25, no. 15, p. 1231-1234, 2003. https://doi.org/10.1023/A:1025020309596
Kim, Y.; Kim, H.; Bae, K.; Yu, J.; Oh, T. Purification and properties of a thermostable phytase from
Konietzny, U.; Greiner, R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). International
Journal of Food Science +Technology, v. 37, p. 791-812, 2002. https://doi.org/10.1046/j.1365-2621.2002.00617.x
Lei, X. G.; Porres, J. M. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, v. 25, no. 21,
p. 1787-1794, 2003. https://doi.org/10.1023/A:1026224101580
Lindberg, J. E.; Ogel, B. Digestive physiology of pigs. Oxford, UK: CAB International, 2001.
López-López, A.; Rogel, M. A.; Ormeño-Orrillo, E.; Martínez-Romero, J.; Martínez-Romero, E.
Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum
sp. nov. Systematic and Applied Microbiology, v. 33, p. 322-327, 2010. https://doi.org/10.1016/j.syapm.2010.07.005
Maffucci, T.; Piccolo, E.; Cumashi, A.; Iezzi, M.; Riley, A. M.; Saiardi, A.; Godage, H. Y.; Rossi, C.; Broggini, M.; Iacobelli,
S.; Potter, B. V. L.; Innocenti, P.; Falasca, M. Inhibition of the phosphatidylinositol 3 Kinase/Akt pathway by inositol
pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Research, v. 65, no. 18, p. 8339-8349, 2005.
https://doi.org/10.1158/0008-5472.CAN-05-0121
Matsui, T.; Nakagawa, Y.; Tamura, A.; Watanabe, C.; Fujita, K.; Nakajima, T.; Yano, H. Efficacy of yeast phytase in improving
phosphorus bioavailability in a corn-soybean meal-based diet for growing pigs. Journal of Animal Science, v. 78,
p. 94-99, 2000. https://doi.org/10.2527/2000.78194x
Mullaney, E. J.; Daly, C. B.; Kim, T.; Porres, J. M.; Lei, X. G.; Sethumadhavan, K.; Ullah, A. H. J. Site-directed mutagenesis
of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochemical and Biophysical
Research Communications, v. 297, p. 1016-1020, 2002. https://doi.org/10.1016/S0006-291X(02)02325-2
Mullaney, E. J.; Ullah, A. H. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical
Research Communications, v. 312, no. 1, p. 179-184, 2003. https://doi.org/10.1016/j.bbrc.2003.09.176
Patki, J. M.; Singh, S.; Mehta, S. Partial purification and characterization of phytase from bacteria inhabiting the mangroves
of the Western Coast of India. International Journal of Current Microbiology and Applied Sciences, v. 4, no. 9, p. 156-169,
2015. Available from: <https://www.ijcmas.com/vol-4-9/J.M. Patki, et al.pdf<.
Accessed on: Sept. 23, 2018.
Rao, D. E.; Rao, K. V.; Reddy, T. P.; Reddy, V. D. Molecular characterization, physicochemical properties, known and potential
applications of phytases: An overview. Critical Reviews in Biotechnology, v. 29, no. 2, p. 182-198, 2009. https://doi.org/10.1080/07388550902919571
Schroder, B.; Breves, G.; Rodehutscord, M. Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus
in pigs. Deutsche tierärztliche Wochenschrift, v. 103, p. 209-214, 1996.
Shimizu, M. Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Bioscience, Biotechnology,
and Biochemistry, v. 56, p. 1266-1269, 1992. https://doi.org/10.1271/bbb.56.1266
Simon, O.; Igbasan, F. In vitro properties of phytases from various microbial origins. International Journal of Food
Science +Technology, v. 37, p. 813-822, 2002. https://doi.org/10.1046/j.1365-2621.2002.00621.x
Strobel, G. A.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology
Reviews, v. 67, p. 491-502, 2003. https://doi.org/10.1128/MMBR.67.4.491-502.2003
Tang, J.; Leung, A.; Leung, C.; Lim, B. L. Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biology
and Biochemistry, v. 38, p. 1316-1324, 2006. https://doi.org/10.1016/j.soilbio.2005.08.021
Tortola, L.; Souza, N. G.; Zaine, L.; Gomes, M. O.; Matheus, L. F.; Vasconcellos, R. S.; Pereira, G. T.; Carciofi, A. C. Enzyme effects
on extruded diets for dogs with soybean meal as a substitute for poultry by-product meal. Journal of Animal Physiology and Animal
Nutrition, v. 97, no. 1, p. 39-50, 2013. https://doi.org/10.1111/jpn.12009
Turner, B. L.; Haygarth, P. M. Phosphorus forms and concentrations in leachate under four grassland soil types. Soil Science Society
of America Journal, v. 64, no. 3, p. 1090-1099, 2000. https://doi.org/10.2136/sssaj2000.6431090x
Urbano, G.; López-Jurado, M.; Aranda, P.; Vidal-Valverde, C.; Tenorio, E.; Porres, J. The role of phytic acid in legumes:
Antinutrient or beneficial function? Journal of Physiology and Biochemistry, v. 56, p. 283-294, 2000. https://doi.org/10.1007/BF03179796
Vohra, A.; Satyanarayana, T. Phytases: Microbial sources, production, purification, and potential biotechnological applications.
Critical Reviews in Biotechnology, v. 23, no. 1, p. 29-60, 2003. https://doi.org/10.1080/713609297
Yoon, S. J.; Choi, Y. J.; Min, H. K.; Cho, K. K.; Kim, J. W.; Lee, S. C.; Jung, Y. H. Isolation and identification of phytase-producing
bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technology, v. 18,
p. 449-454, 1996. https://doi.org/10.1016/0141-0229(95)00131-X
Zamudio, M.; González, A.; Medina, J. A. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase.
Letters in Applied Microbiology, v. 32, p. 181-184, 2001. https://doi.org/10.1046/j.1472-765x.2001.00890.x