Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 5, no. 11 (2018) Dibal

 

Vol. 5, No. 11, p. 647-656 - Dec. 31, 2018

 

Role of quercetin in the prevention and treatment of diseases: Mini review



Nathan Isaac Dibal , Sani Hyedima Garba and Tamunotonye Watson Jacks

Abstract
Quercetin is the most abundant flavonoid and one of the most important antioxidant of plant origin. The aim of the review was to describe quercetin and its role in the prevention and treatment of diseases. Articles were searched from internet databases using the following search words; quercetin, oxidative stress, quercetin and liver disease, quercetin and kidney disease, quercetin and hyperglycemia. The articles that met the selection criteria were used to describe quercetin and its role in the prevention and treatment of different diseases. The result showed that flavonoids are generally found at higher concentrations in outer layers of fruits and vegetables, onion has more quercetin than blackcurrants, broccoli, black grapes and apple. Quercetin and quercetin rich diets are used in the treatment and prevention of hyperglycemia, cardiovascular and kidney diseases, liver damage and nervous system disorders. In conclusion, quercetin is a naturally occurring flavonoid, more abundant in fruits and vegetables and are used in the treatment and prevention of many diseases.


Keywords
Quercetin; Flavonoid; Oxidative stress; Disease.

DOI
10.21472/bjbs.051104

Full text
PDF

References
Alkushi. A. G. R.; Elsawy, N. A. M. Quercetin attenuates; indomethacin-induced acute gastric ulcer in rats. Folia Morphologica, v. 76, p. 252–261, 2017. https://doi.org/10.5603/FM.a2016.0067

Ansari, M. A.; Abdul, H. M.; Joshi, G.; Opiia, W. O.; Butterfield, D. A. Protective effect of quercetin in primary neurons against Aβ (1 42): Relevance to Alzheimer's disease. The Journal of Nutritional Biochemistry, v. 20, p. 269-275, 2009. https://doi.org/10.1016/j.jnutbio.2008.03.002

Arteel, G. E. Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology, v. 124, p. 778-790, 2003. https://doi.org/10.1053/gast.2003.50087

Ashkani-Esfahani, S.; Bagheri, F.; Azarpira, N.; Elmira, E. E.; Emami, Y.; Hassanabadi, N.; Keshtkar, M. Protective effects of quercetin on thioacetamide-induced acute liver damage and its related biochemical and pathological alterations. The Egyptian Journal of Internal Medicine, v. 28, p. 123-127, 2016. https://doi.org/10.4103/1110-7782.200965

Bakhshaeshi, M.; Khaki, A.; Fathiazad, F.; Khaki, A. A.; Ghadamkheir, E. Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pacific Journal of Tropical Biomedicine, v. 2, p. 528-531, 2012. https://doi.org/10.1016/S2221-1691(12)60090-2

Banerjee, P. Reducing risk of cardiovascular disease: Exploring the effects of quercetin on the contractile force of vascular smooth muscle. Journal of Purdue Undergraduate Research, v. 5, p. 2-9, 2015. https://doi.org/10.5703/jpur.05.1.01

Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Role of quinones in toxicology. Chemical Research in Toxicology, v. 13, p. 135-160, 2000. https://doi.org/10.1021/tx9902082

Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; Zimmermann, B. F.; Stehle, P.; Egert, S. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: A randomised double-blinded placebo-controlled cross-over trial. British Journal of Nutrition, v. 114, p. 1263-1277, 2015. https://doi.org/10.1017/S0007114515002950

Chekalina, N.; Burmak, Y.; Petrov, Y.; Borisova, Z.; Manusha, Y.; Kazakov, Y.; Kaidashev, I. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease. Indian Heart Journal, v. 70, p. 593-597, 2018. https://doi.org/10.1016/j.ihj.2018.04.006

Croft, K. D. The chemistry and biological effects of flavonoids and phenolic acids. Annals of the New York Academy of Sciences, v. 854, p. 435-442, 1998. https://doi.org/10.1111/j.1749-6632.1998.tb09922.x

Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary phenolic: Chemistry, bioavailability and effects on health. Natural Product Reports, v. 26, p. 1001-1043, 2009. https://doi.org/10.1039/B802662A

Ekstrom, A. M.; Serafini, M.; Nyren, O.; Wolk, A.; Bosetti, C.; Bellocco, R. Dietary quercetin intake and risk of gastric cancer: Results from a population-based study in Sweden. Annals of Oncology, v. 22, p. 438-443, 2011. https://doi.org/10.1093/annonc/mdq390

Gennaro, L.; Leonardi, C.; Esposito, F.; Salucci, M.; Maiani, G.; Quaglia, G.; Fogliano, V. Flavonoid and carbohydrate contents in Tropea red onions: Effects of homelike peeling and storage. Journal of Agricultural and Food Chemistry, v. 50, p. 1904-1910, 2002. https://doi.org/10.1021/jf011102r

Gomes, I. B. S.; Porto, M. L.; Santos, M. C. L. F. S.; Campagnaro, B. P.; Gava, A. L.; Meyrelles, S. S.; Pereira, T. M.; Vasquez, E. C. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice. Frontiers in Physiology, v. 6, p. 1-8, 2015. https://doi.org/10.3389/fphys.2015.00247

Hemmati, M.; Mostafavi, S. E.; Zarban, A.; Hoshya, R. Protective effects of quercetin on hyperglycemia and stress proteins expression in rats with streptozocin-induced diabetes. Modern Care Journal, v. 15, no. 2, e64964, 2018. https://doi.org/10.5812/modernc.64964

Hollman, P. C. H.; Arts, I. C. W. Flavonols, flavones and flavanols: Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, v. 80, p. 1081-1093, 2000. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G

Jainu, M.; Devi, C. S. In vitro and in vivo evaluation of free radical scavenging potential of Cissus quadrangularis. Pharmaceutical Resiew, v. 43, p. 95-99, 2005. https://doi.org/10.1080/13880200500406636

Jambhulkar, S.; Deshireddy, S.; Jestadi, D. B.; Periyasamy, L. Quercetin attenuating doxorubicin induced hepatic, cardiac and renal toxicity in male albino Wistar rats. American Journal of Phytomedicine and Clinical Therapeutics, v. 2, p. 985-1004, 2014.

Kawsar, M. H.; Raihana, R.; Sultana, T.; Sohel, D.; Sohaily, S. I. In-vitro and in-vivo models for antioxidant activity evaluation: A review. Journal SUB, v. 5, p. 21-31, 2014.

Kelly, G. S. Quercetin. Alternative Medicine Review, v. 16, p. 172-194, 2011.

Khaleel, E. F.; Mostafa, D. G.; Abdel-Aleem, G. A. Gastroprotective effect of flavonoid quercetin and coenzyme Q10 in indomethacin-induced gastric ulcers in normal and diabetic rats. OSR Journal of Dental and Medical Sciences, v. 14, p. 58-71, 2015.

Kilicarslan, G.; Donmez, N. The effects of quercetin on antioxidant system and some blood parameters in experimental diabetic rats. Bulletin of Environment, Pharmacology and Life Sciences, v. 5, p. 28-32, 2016.

Kim, J.; Kang, M.; Choi, H.; Jeong, S.; Lee, Y.; Kim, J. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutrition Research and Practice, v. 5, p. 107-111, 2011. https://doi.org/10.4162/nrp.2011.5.2.107

Kinnula, V. L.; Crapo, J. D. Superoxide dismutases in malignant cells and human tumors. Free Radical Biology and Medicine, v. 36, p. 718-744, 2004. https://doi.org/10.1016/j.freeradbiomed.2003.12.010

Layal, K.; Perdhana, I. S.; Louisa, M.; Estuningtyas, A.; Soetikno, V. The effects of quercetin on oxidative stress and fibrosis markers in chronic kidney disease rat model. Medical Journal of Indonesia, v. 26, p. 169-177, 2017. https://doi.org/10.13181/mji.v26i3.1462

Li, X.; Jin, Q.; Yao, Q.; Xu, B.; Li, L.; Zhang, S.; Tu, C. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Frontiers in Pharmacology, v. 9, p. 1-14, 2018. https://doi.org/10.3389/fphar.2018.00072

Lombard, K. A.; Geoffriau, E.; Peffley, E. Flavonoid quantification in onion by spectrophotometric and high performance liquid chromatography analysis. HortScience, v. 37, p. 682-685, 2002.

Magalingam, K. B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. International Journal of Immunopathology and Pharmacology, v. 29, p. 30-39, 2016. https://doi.org/10.1177/0394632015613039

Marcolin, E.; Forgiarini, L. F.; Rodrigues, G.; Tieppo, J.; Borghetti, G. S.; Bassani, V. L.; Picada, J. N.; Marroni, N. P. Quercetin decreases liver damage in mice with non-alcoholic steatohepatitis. Basic & Clinic Pharmacology & Toxicology, v. 112, p. 385-391, 2013. https://doi.org/10.1111/bcpt.12049

Morris, J. L. Composition and flavonoid levels in Onion (Allium cepa) grown in hydroponies in greenhouses and growth chambers. Texas: Faculty of Texas Technical University, 2001. (M. Sc. Thesis).

Park, Y. K.; Lee, C. Y. Identification of isorhamnetin 4'-glucoside in onions. Journal of Agricultural and Food Chemistry, v. 44, p. 34-36, 1996. https://doi.org/0.1021/jf950310e

Peres, W.; Tuñón, M. J.; Collado, P. S.; Herrmann, S.; Marroni, N.; González-Gallego, J. The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction. Journal of Hepatology, v. 33, p. 742-750, 2000. https://doi.org/10.1016/S0168-8278(00)80305-0

Pineda, M. R. B.; Calzada, G. Effect of Philippine red Allium cepa Lin. (Sibuyas na Pula) on serum LDL-cholesterol level. International Journal of Medical and Biomedical Sciences, v. 1, p. 14-20, 2013.

Rajeshkumar, D. Evaluation of antioxidant property and toxicological assessment of Polyalthia longifolia var. Pendula leaf. Saurashtra: Saurashtra University, 2010. (Thesis of doctorate).

Ren, J.; Li, J.; Liu, X.; Feng, Y.; Gui, Y.; Yang, J.; He, W.; Daia, C. Quercetin inhibits fibroblast activation and kidney fibrosis involving the suppression of mammalian target of Rapamycin and β-catenin signaling. Scientific Reports, v. 6, 23968, 2016.

Shakeerabanu, M.; Sujatha, K.; Rajneesh, C. P.; Manimaran, A. The defensive effect of quercetin on indomethacin induced gastric damage in rats. Advances in Biological Research, v. 5, p. 64-70, 2011.

Smith, C.; Lombard, K. A.; Peffley, E. B.; Weixin, L. W. Genetic analysis of quercetin in onion (Allium cepa L.) 'Lady Raider'. Texas Journal of Agriculture and Natural Resources, v. 16, p.24-28, 2003.

Smith, M. A.; Rottkamp, C. A.; Nunomura, A.; Raina, A. K. Perry G. Oxidative stress in Alzheimer's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, v. 1502, p. 139-144, 2000. https://doi.org/10.1016/S0925-4439(00)00040-5

Souza, S. R. G.; Miranda Neto, M. H.; Colombo, J. V.; Perles, M.; Frez, F. C. V.; Zignani, I.; Ramalho, F. V.; Hermes-Uliana, C.; Bossolani, G. D. P.; Zanoni, J. N.. Antioxidant effects of the quercetin in the jejunal myenteric innervation of diabetic rats. Frontiers in Medicine, v. 4, p. 1-8, 2017. https://doi.org/10.3389/fmed.2017.00008

Stavric, B.; Lau, B. P.-Y.; Matula, T. I.; Klassen, R.; Lewis, D.; Downie, R. H. Mutagenic heterocyclic aromatic amines (HAAs) in 'processed food flavour' samples. Food and Chemical Toxicology, v. 35, p. 185-197, 1997. https://doi.org/10.1016/S0278-6915(96)00119-6

Takahama, U.; Hirota, S. Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant & Cell Physiology, v. 41, p. 1021-1029, 2000. https://doi.org/10.1093/pcp/pcd025

Trammell, K. W.; Peterson, C. E. Quantitative differences in the flavonol content of yellow onion, Allium cepa L. Journal of the American Society for Horticultural Science, v. 101, p. 205-207, 1976.

Tsushida, T.; Suzuki, M. Content of flavonol glucosides and some properties of enzymes metabolizing the glucosides in onion: Flavonoids in fruits and vegetables, part II. Nippon Shokuhin Kagaku Kogaku Kaishi, v. 43, p. 642-649, 1996. https://doi.org/10.3136/nskkk.43.642

Vargas, F.; Romecín, P.; García-Guillén, A. I.; Wangesteen, R.; Vargas-Tendero, P.; Paredes, M. D.; Atucha, N. M.; García-Estañ, J. Flavonoids in kidney health and disease. Frontiers in Physiology, v. 9, p. 1-12, 2018. https://doi.org/10.3389/fphys.2018.00394

Wan, Y.; Tang, M. H.; Chen, X. C.; Chen, L. J.; Wei, Y. Q.; Wang, Y. S. Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Brazilian Journal of Medical and Biological Research, v. 47, p. 655-661, 2014. https://doi.org/10.1590/1414-431X20143704

Wiczkowski, W.; Romaszko, J.; Bucinski, A. Z. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. The Journal of Nutrition, v. 138, p. 885-888, 2008. https://doi.org/10.1093/jn/138.5.885

Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: Role of inflammatory disease and progression to cancer. Biochemical Journal, v. 313, p. 17-29, 1996. https://doi.org/10.1042/bj3130017

Wu, L.; Zhang, Q.; Mo, W.; Feng, J.; Li, S.; Li, J.; Liu, T.; Xu, S.; Wang, W.; Lu, X.; Yu, Q.; Chen, K.; Xia, Y.; Lu, J.; Xu, L.; Zhou, Y.; Fan, X.; Guo, C. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Scientific Reports, v. 7, 92-89, 2017. https://doi.org/10.1038/s41598-017-09673-5

Yang, Y.; Liu, X.; Wu, T.; Zhang, W.; Shu, J.; He, Y.; Tang, S. Quercetin attenuates AZT-induced neuroinfammation in the CNS. Scientific Reports, v. 8, no. 1, 6194, 2018. https://doi.org/10.1038/s41598-018-24618-2

Zhang, Y.; Dong, H.; Wang, M.; Zhang, J. Quercetin isolated from Toona sinensis leaves attenuates hyperglycemia and protects hepatocytes in high-carbohydrate/high-fat diet and alloxan induced experimental diabetic mice. Journal of Diabetes Resesearch, v. 2016, Article ID 8492780, 2016. https://doi.org/10.1155/2016/8492780

Zhu, M.; Zhou, X.; Zhao, J. Quercetin prevents alcohol-induced liver injury through targeting of PI3K/Akt/nuclear factor-κB and STAT3 signaling pathway. Experimental Therapeutic Medicine, v. 14, p. 6169-6175, 2017. https://doi.org/10.3892/etm.2017.5329