Vol. 5, No. 10, p. 249-258 - Aug. 31, 2018
Life cycle analysis of raw milk production in Tunisia
Amira Ghazouani








Abstract
Life Cycle Assessment (LCA) is a tool to calculate greenhouse gas (GHG) emissions of dairy production. A survey was conducted in 20 dairy farms at the governorate of Sousse. The present study aimed to evaluate environmental impact of milk production at the farm regarding GHG emission and energy consumption. In the 20 dairy farms total GHG emissions resulted in a mean of 0.63 + 0.2 kg CH4/kg ECM and forage can contribute with a means 0.35 Le kg CO2eq/DM. The main reductions in GHG emissions per kg of FPCM started from 2,347 kg per cow per year and then the reduction slowed down to stabilize at around 6,127 kg FPCM per cow per year.
Keywords
Life cycle analysis; Mitigation; Carbon footprint; Milk corrected.
DOI
10.21472/bjbs.051005
Full text
PDF
References
Adler. A. A.; Doole. G. J.; Romera. A. J.; Beukes, P. C. Managing greenhouse gas emissions in two major dairy regions of New
Zealand: A system-level evaluation. Agricultural Systems, v. 135, p. 1-9, 2015. https://doi.org/10.1016/j.agsy.2014.11.007
Andrén, O.; Kätterer, T. ICBM: The introductory carbon balance model for exploration of soil carbon balances.
Ecological Applications, v. 7, no. 4, p. 1226-1236, 1997. https://doi.org/10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2
Baek. C. Y.; Lee, K. M.; Park, K. H. Quantification and control of the greenhouse gas emissions from a dairy cow system.
Journal of Cleaner Production, v. 70, p. 50-60, 2014. https://doi.org/10.1016/j.jclepro.2014.02.010
Biggs, E. M.; Bruce, E.; Boruff, B.; Duncan, J. M. A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F. V.;
Curnow, J.; Haworth, B.; Duce, S.; Imanari, Y. Sustainable development and the water-energy-food nexus: A perspective on
livelihoods. Environmental Science & Policy, v. 54, p. 389-397, 2015. https://doi.org/10.1016/j.envsci.2015.08.002
Capper, J. L.; Cady, R. A.; Bauman, D. E. The environmental impact of dairy production: 1944 compared with 2007.
Journal of Animal Science, v. 87, no. 6, p. 2160-2167, 2009. https://doi.org/10.2527/jas.2009-1781
Dong, Y.; Xia, B.; Chen, W. Carbon footprint of urban areas: an analysis based on emission sources account model.
Environmental Science & Policy, v. 44, p. 181-189, 2014. https://doi.org/10.1016/j.envsci.2014.07.013
Gerber, P. J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling
climate change through livestock: A global assessment of emissions and mitigation opportunities. Rome: FAO, 2013.
Hawkins, J.; Weersink, A.; Wagner-Riddle, C.; Fox, G. Optimizing ration formulation as a strategy for greenhouse gas
mitigation in intensive dairy production systems. Agricultural Systems, v. 137, p. 1-11, 2015. https://doi.org/10.1016/j.agsy.2015.03.007
Kröbel, R.; Bolinder, M. A.; Janzen, H. H.; Little, S. M.; Vandenbygaart, A. J.; Kätterer, T. Canadian farm-level
soil carbon change assessment by merging the greenhouse gas model Holos with the Introductory Carbon Balance Model (ICBM).
Agricultural Systems, v. 143, p. 76-85, 2016. https://doi.org/10.1016/j.agsy.2015.12.010
Laratte, B.; Guillaume, B.; Kim, J.; Birregah, B. Modeling cumulative effects in life cycle assessment: The case of
fertilizer in wheat production contributing to the global warming potential. The Science of the Total Environment,
v. 481, p. 588-595, 2014. https://doi.org/10.1016/j.scitotenv.2014.02.020
Little, S. M.; Lindeman, J.; Maclean, K.; Janzen, H. H. Holos: A Tool to Estimate and Reduce GHGs from Farms; Methodology
and Algorithms for Version 2.0. Ottawa: Agriculture and Agri-Food Canada, 2013.
Mantyka-Pringle, C. S.; Visconti, P. ; Di Marco, M.; Martin, T. G.; Rondinini, C.; Rhodes, J. R. Climate change modifies
risk of global biodiversity loss due to land-cover change. Biological Conservation, v. 187, p. 103-111, 2015.
https://doi.org/10.1016/j.biocon.2015.04.016
NRC - Nutrient Requirements of Dairy Cattle. National Research Council Subcommittee on Dairy Cattle Nutrition. 7. ed. rev.
Washington. D. C., USA: Committee on animal Nutrition. National Academy Press, 2001.
Orphant, S. T. C. Life cycle assessment of the production of raw milk. Queensland: The University of Southern,
Queensland Faculty of Engineering and Surveying, 2004. (Dissertation).
Tieri, M. P. ; Faverin, C. ; Charlón, V.; Comerón, E. A.; Gonda, H. L. Analysis of different productive strategies on
greenhouse gases emissions in Argentinian dairy production systems. Anais da 54a Reunião Anual
da Sociedade Brasileira de Zootecnia, Foz do Iguaçu, 2017.
Upton, J. J.; Humphreys, P. W. G.; Groot Koerkamp, P.; French, P.; Dillonvand, I.; De Boer, J. M. Life cycle assessment
of energy use on Irish dairy farms. INTERREG - IVB North-West Europe, the 'Dairyman' Project, 2011.
Vergé, X. P. C.; Maxime, D.; Dyer, J. A.; Desjardins, R. L.; Arcand, Y.; Vanderzaag, A. Carbon footprint of Canadian
dairy products: calculations and issues. Journal of Dairy Science, v. 96, n. 9, p. 6091-6104, 2013. https://doi.org/10.3168/jds.2013-6563
Wang, X.; Kristensen, T.; Mogensen, L.; Knudsen, M. T.; Wang, X. Greenhouse gas emissions and land use from confinement dairy
farms in the Guanzhong plain of China-using a life cycle assessment approach. Journal of Cleaner Production, v. 113,
p. 577-586, 2016. https://doi.org/10.1016/j.jclepro.2015.11.099
Weidema, B.; Wesnæs, M.; Hermansen, J.; Kristensen, T.; Halberg, N.; Eder, P.; Delgado, L. (Eds.). Environmental
improvement potentials of meat and dairy products. Seville: JRC Scientific and Technical Reports, 2008. https://doi.org/10.2791/38863
Zhao, R.; Liu, Y.; Zhang, N.; Huang, T. An optimization model for green supply chain management by using a big data analytic
approach. Journal of Cleaner Production, v. 142, p. 1085-1097, 2017. https://doi.org/10.1016/j.jclepro.2016.03.006