Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 5, no. 10 (2018) Santos

 

Vol. 5, No. 10, p. 213-223 - Aug. 31, 2018

 

The role of PacC and Nuc-1 transcription factors in the microbial metabolic engineering



Rodrigo da Silva Santos , Ravely Casarotti Orlandelli and João Alencar Pamphile

Abstract
The adaptation of microorganisms to different environmental conditions, such as temperature, salinity, extreme pH values, and oscillation in the availability of nutrients (carbon, nitrogen, and phosphate), has a vital role for their survival. The transduction of the signal generated by the sensing of the extracellular pH by fungi occurs through a conserved molecular pathway that involves the activation of PacC transcription factor. This adaptive response is observed in various species and impacts the metabolic processes, pathogenicity, and biotechnological applications in the industry. Variations in pH can influence nearly all physiological processes that lead to the secretion of macromolecules and metabolites. Under the influence of the regulatory circuits of carbon, nitrogen, sulfur, and pH, the regulation of inorganic phosphate (Pi) uptake is performed by several regulatory genes, such as Nuc-1 transcription factor. Nuc-1 is involved with the post-transcriptional control and regulation of the transcription of structural genes that act in the homeostasis system and Pi uptake. Pi is essential for maintaining cell structure and many metabolic processes, being a growth limiter in nature. Thus, the genetic and molecular mechanisms that control the adaptation of microorganisms to the variations of Pi levels are being shown in many model organisms. In this way, the study of the adaptive microbial response to Pi oscillations has high importance, since these investigations may contribute to portray the regulation of molecular mechanisms involved with the Pi system and pH regulator circuit. The pH regulation, once established, will permit the genetic manipulation of economic and medical processes.


Keywords
Environment pH; Phosphate; Transcription factors; Metabolism.

DOI
10.21472/bjbs.051002

Full text
PDF

References
Almeida, T. T.; Ribeiro, M. A. S.; Polonio, J. C.; Garcia, F. P.; Nakamura, C. V.; Meurer, E. C.; Sarragiotto, M. H.; Baldoqui, D. C.; Azevedo, J. L.; Pamphile, J. A. Curvulin and spirostaphylotrichins R and U from extracts produced by two endophytic Bipolaris sp. associated to aquatic macrophytes with antileishmanial activity. Natural Product Research, v. 26, p. 1-8, 2017. https://doi.org/10.1080/14786419.2017.1380011

Caddick, M. X.; Brownlee, A. G.; Arst, H. N. Regulation of gene-expression by pH of the growth-medium in Aspergillus nidulans. Molecular Genetics and Genomics, v. 203, no. 2, p. 346-353, 1986. https://doi.org/10.1007/bf00333978

Cazzaniga, R. A. Caracterização funcional do fator de transcriço Pacc do dermatófito Trichophyton rubrum: regulação da expressão gênica em resposta ao pH ambiente e na interação com moléculas do hospedeiro. São Paulo: Universidade de Sćo Paulo, 2011. (Thesis of doctorat). Available from: <http://bdpi.usp.br/item/002198772>. Accessed on: Nov. 01, 2017.

Chen, M.; Lopes, J. M. Multiple basic helix-loop-helix proteins regulate expression of the ENO1 gene of Saccharomyces cerevisiae. Eukaryotic Cell, v. 6, no. 5, p. 786-796, 2007. https://doi.org/10.1128/EC.00383-06

Davis, R. H. Neurospora: Contributions of a model organism. New York: Oxford University Press, 2000.

Dongliang, W.; Dou, X.; Hashmi, S. B.; Osmani, S. A. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. Journal of Biological Chemistry, v. 279, no. 36, p. 37693-37703, 2004. https://doi.org/10.1074/jbc.M403853200

Dorn, G. Phosphatase mutants in Aspergillus nidulans. Science, v. 150, no. 1, p. 1183-1184, 1965. https://doi.org/10.1126/science.150.3700.1183

Durman, S. B.; Menendez, A. B.; Godeas, A. M. Variation in oxalic acid production and mycelial compatibility within field populations of Sclerotinia sclerotiorum. Soil Biology and Biochemistry, v. 37, no. 1, p. 2180-2184, 2005. https://doi.org/10.1016/j.soilbio.2005.03.017

Favaron, F.; Sella, L.; D’Ovidio, R. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Molecular Plant-Microbe Interactions, v. 17, no. 12, p. 1402-1409, 2004. https://doi.org/10.1094/mpmi.2004.17.12.1402

Ferreira-Nozawa, M. S.; Silveira, H. C.; Ono, C. J.; Fachin, A. L.; Rossi, A.; Martinez-Rossi, N. M. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Medical Mycology, v. 44, no. 7, p. 641-645, 2006. https://doi.org/10.1080/13693780600876553

Freitas, J. S.; Silva, E. M.; Rossi, A. Identification of nutrient-dependent changes in extracellular pH and acid phosphatase secretion in Aspergillus nidulans. Genetics and Molecular Research, v. 6, no. 3, p. 721-729, 2007. Available from: <http://www.funpecrp.com.br/gmr/year2007/vol3-6/gmr0369_abstract.html>. Accessed on: Nov. 01, 2017.

Freitas, J. S.; Silva, E. M.; Leal, J.; Gras, D. E.; Martinez-Rossi, N. M.; Santos, L. D.; Palma, M. S.; Rossi, A. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress and Chaperones, v. 16, no. 15, p. 565-572, 2011. https://doi.org/10.1007/s12192-011-0267-5

Furukama, K.; Hasunuma, K.; Shinohara, Y. Characterization of Pi-repressible enzymes secreted in culture media by Neurospora crassa wild-type cells and null type mutants. Journal of Bacteriology, v. 169, no. 10, p. 4790-4795, 1987. https://doi.org/10.1128/jb.169.10.4790-4795.1987

Gras, D. E.; Persinoti, G. F.; Peres, N. T. A.; Martinez-Rossi, N. M.; Tahira, A. C.; Reis, E. M.; Prade, R. A.; Rossi, A. Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway. Fungal and Genetics Biology, v. 60, no. 1, p. 140-149, 2013. https://doi.org/10.1016/j.fgb.2013.05.007

Grotelueschen J.; Peleg, Y.; Glass, N. L; Metzenberg, R. L. Cloning and characterization of the pho-2+ gene encoding a repressible alkaline phosphatase in Neurospora crassa. Gene, v. 144, no. 1, p. 147-148, 1994. https://doi.org/10.1016/0378-1119(94)90223-2

Han, S. W.; Nahas, E.; Rossi, A. Regulation of synthesis and secretion of acid and alkaline phosphatases in Neurospora crassa. Current Genetics, v. 11, no. 6-7, p. 521-527, 1987. https://doi.org/10.1007/bf00384615

Huang X.; Li Y.; Niu Q.; Zhang K. Suppression Subtractive Hybridization (SSH) and its modifications in microbiological research. Applied Microbiology and Biotechnology, v. 76, no. 4, p. 753-760, 2007. https://doi.org/10.1007/s00253-007-1076-8

Kang, S.; Metzenberg, R. L. Molecular analysis of nuc-1+, a gene controlling phosphorus acquisition in Neurospora crassa. Molecular and Cellular Biology, v. 10, no. 11, p. 5839-5848, 1990. https://doi.org/10.1128/mcb.10.11.5839

Kato-Maeda, M.; Gao Q.; Small, P. M. Microarray analysis of pathogens and their interaction with hosts. Cellular and Microbiology, v. 3, n. 11, p. 713-719, 2001. https://doi.org/10.1046/j.1462-5822.2001.00152.x

Kronstad J. W.; Hu, G.; Jung, W. H. An encapsulation of iron homeostasis and virulence in Cryptococcus neoformans. Trends in Microbiology, v. 21, no. 9, p. 457-465, 2013. https://doi.org/10.1016/j.tim.2013.05.007

Lamb, T. M.; Xu, W.; Diamond, A.; Mitchell, A. P. Akaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. Journal of Biological Chemistry, v. 276, no. 3, p. 1850-1856, 2001. https://doi.org/10.1074/jbc.M008381200

Leal, J. Squina, F. M.; Martinez-Rossi, N. M.; Rossi, A. The transcription of the gene for iso-orotate decarboxylase (IDCase), an enzyme of the thymidine salvage pathway, is downregulated in the pregc mutant strain of Neurospora crassa grown under phosphate starvation. Canadian Journal of Microbiology, v. 53, no. 8, p.1011-1015, 2007. https://doi.org/10.1139/W07-064

Luo Z.; Ren, H.; Mousa, J. J.; Rangel, D. E.; Zhang, Y.; Bruner, S. D.; Keyhani, N. O. The PacC transcription factor regulates secondary metabolite production and stress response, but has only minor effects on virulence in the insect pathogenic fungus Beauveria bassiana. Environmental Microbiology, v. 19, no. 2, p. 788-802, 2017. https://doi.org/10.1111/1462-2920.13648

Martinez-Rossi, N. M.; Ferreira-Nozawa, M. S.; Graminha, M. A. S; Nozawa, S. R.; Fachin, A. L.; Cervelatti, E. P.; Prade, R. A.; Rossi, A. Molecular aspects of dermatophyte-host interactions. In: Kushwaha, R. K. S. (Ed.). Fungi in human and animal health. 9. ed. Jodhpur, India: Scientific Publishers, 2004. p. 143-165.

Martinez-Rossi, N. M.; Persinoti, G. F.; Peres, N. T. A.; Rossi, A. Role of pH in the pathogenesis of dermatophytoses. Mycoses, v. 55, no. 5, p. 381-387, 2011. https://doi.org/10.1111/j.1439-0507.2011.02162.x

Martinez-Rossi, N. M.; Peres N. T.; Rossi A. Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia, v. 182, no. 1/2, p. 215-227, 2017. https://doi.org/10.1007/s11046-016-0057-9

Mendes, N. S.; Trevisan, G. L.; Cruz, A. H. S.; Santos, R. S.; Peres, N. T. A.; Martinez-Rossi, N. M.; Rossi, A. Transcription of N- and O-linked mannosyltransferase genes is modulated by the pacC gene in the human dermatophyte Trichophyton rubrum. FEBS Open Bio, v. 2, no. 1, p. 294-297, 2012. https://doi.org/10.1016/j.fob.2012.09.005

Metzenberg, R. L. Implications of some genetic control mechanisms in Neurospora. Microbiological Reviews, v. 43, no. 3, p. 361-383, 1979. Available from: <http://mmbr.asm.org/content/43/3/361.long>. Accessed on: Nov. 01, 2017.

Metzenberg, R. L.; Chia, W. Genetic control of phosphorus assimilation in Neurospora crassa: dose-dependent dominance and recessive ness in constitutive mutants. Genetics, v. 93, no. 3, p. 625-643, 1979. Available from: <http://www.genetics.org/content/93/3/625.long>. Accessed on: Nov. 01, 2017.

Murray, P. R. Microbiologia Médica. Rio de Janeiro: Guanabara Koogan, 2014.

Nahas, E.; Terenzi, H. F.; Rossi, A. Effect of carbon source and pH on the production and secretion of acid-phosphatase (EC3.1.3.2) and alkaline-phosphatase (EC3.1.3.1) in Neurospora crassa. Journal of General Microbiology, v. 128, no. 9, p. 2017-2021, 1982. https://doi.org/10.1099/00221287-128-9-2017

Nozawa, S. R.; Thedei, G.; Crott, L. S. P.; Barbosa, J. E.; Rossi, A. The synthesis of phosphate-repressible alkaline phosphatase does not appear to be regulated by ambient pH in the filamentous mould Neurospora crassa. Brazilian Journal of Microbiology, v. 33, no. 1, p. 92-95, 2002. https://doi.org/10.1590/S1517-83822002000100018

Nozawa, S. R.; Ferreira-Nozawa, M. S.; Martinez-Rossi, N. M.; Rossi, A. The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway. Fungal Genetics and Biology, v. 39, no. 3, p. 286-295, 2003. https://doi.org/10.1016/S1087-1845(03)00051-3

Ogawa, N.; Derisi, J.; Brown, P. O. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Molecular Biology of the Cell, v. 11, no. 12, p. 4309-4321, 2000. https://doi.org/10.1091/mbc.11.12.4309

Orejas, M.; Espeso, E. A.; Tilburn, J.; Sarkar, S.; Arst, H. N. Jr.; Peñalva, M. A. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes and Development, v. 9, no. 13, p. 1622-1632, 1995. https://doi.org/10.1101/gad.9.13.1622

Orlandelli, R. C.; Corradi da Silva, M. L.; Vasconcelos, A. F. D.; Almeida, I. V.; Vicentini, V. E. P.; Prieto, A.; Hernandez, M. D. D.; Azevedo, J. L.; Pamphile, J. A. β-(1→3,1→6)-D-glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. International Journal of Biological Macromolecules, v. 94, p. 431-437, 2017. https://doi.org/10.1016/j.ijbiomac.2016.10.048

Palma, M. S.; Han, S. W.; Rossi, A. Dissociation and catalytic activity of phosphate-repressible alkaline-phosphatase from Neurospora crassa. Phytochemistry, v. 28, no. 12, p. 3281-3284, 1989. https://doi.org/10.1016/0031-9422(89)80331-0

Paytan, A.; Mclaughlin, K. The oceanic phosphorus cycle. Chemical Reviews, v. 107, no. 12, p. 563-576, 2007. https://doi.org/10.1021/cr0503613

Peleg, Y.; Metzenberg, R. L. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC 1. Molecular and Cellular Biology, v. 14, no. 12, p. 7816-7826, 1994. https://doi.org/10.1128/mcb.14.12.7816

Peleg, Y.; Aramayo, R.; Kang, S.; Hall, J. G.; Metzenberg, R. L. NUC-2, a component of phosphate-regulated signal transduction pathway in Neurospora crassa, is an ankyrin repeat protein. Molecular and General Genetics, v. 252, no. 6, p. 709-716, 1996. https://doi.org/10.1007/bf02173977

Peres, N. T.; Maranhão, F. C.; Rossi, A.; Martinez-Rossi, N. M. Dermatophytes: host-pathogen interaction and antifungal resistance. Anais Brasileiros de Dermatologia, v. 85, no. 5, p. 657-667, 2010. https://doi.org/10.1590/S0365-05962010000500009

Persson, B. L.; Lagerstedt, J. O.; Pratt, J. O.; Pattison-Granberg, J.; Lundh, K.; Shokrollahzadeh, S.; Lundh, F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Current Genetics, v. 43, no. 4, p. 225-244, 2003. https://doi.org/10.1007/s00294-003-0400-9

Raj, K G.; Manikandan, R.; Arulvasu, C.; Pandi, M. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 138, p. 667-674, 2015. https://doi.org/10.1016/j.saa.2014.11.036

Rollins, J. A.; Dickman, M. B. pH Signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 Homolog. Applied and Environmental Microbiology, v. 67, no. 1, p. 75-81, 2001. https://doi.org/10.1128/aem.67.1.75-81.2001

Romanowski K.; Zaborin, A.; Valuckaite, V.; Rolfes, R. J.; Babrowski, T.; Bethel, C.; Olivas, A.; Zaborina, O.; Alverdy, J. C. Candida albicans isolates from the gut of critically ill patients respond to phosphate limitation by expressing filaments and a lethal phenotype. Plos One, v. 7, n. 1, p. 301-319, 2012. https://doi.org/10.1371/journal.pone.0030119

Rossi, A.; Cruz, A. H. S.; Santos, R. S.; Silva, P. M.; Silva, E. M.; Mendes, N. S.; Martinez-Rossi. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. International Union of Biochemistry and Molecular Biology Life, v. 65, no. 11, p. 930-935, 2013. https://doi.org/10.1002/iub.1217

Santos, R. S. Regulação da expressão gênica no patógeno humano Trichophyton rubrum em resposta ao pH ambiente, a variações nutricionais e na interação dermatófito-hospedeiro. São Paulo: Universidade de São Paulo, 2013. (Thesis of doctorat). https://doi.org/10.11606/T.17.2013.tde-15052014-104035

Schaechter, M. Microbiologia: mecanismos das doenças infecciosas. Rio de Janeiro: Guanabara Koogan, 2002.

Selvig, K.; Alspaugh, J. A. pH response pathways in fungi: adapting to host-derived and environmental signals. Mycobiology, v. 39, no. 4, p. 249-256, 2011. https://doi.org/10.5941/myco.2011.39.4.249

Silva, E. M.; Freitas, J. S.; Gras, D. E.; Squina, F. M.; Leal, J.; Silveira, H. C.; Martinez-Rossi, N. M.; Rossi, A. Identification of genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a lost-of-function mutation in the palA gene. Canadian Journal of Microbiology, v. 54, no. 10, p. 803-811, 2008. https://doi.org/ 10.1139/w08-072

Thedei-Júnior, G.; Nozawa, S. R.; Simões, A. L.; Rossi, A. Gene pho-2 codes for the multiple active forms of Pi-repressible alkaline phosphatase in the mould Neurospora crassa. World Journal of Microbiology and Biotechnology, v. 13, no. 1, p. 609-611, 1997. https://doi.org/10.1023/A:1018550317025

Tilburn, J.; Sarkar, S.; Widdick, D. A.; Espeso, E. A.; Orejas, M.; Mungroo, J.; Peńalva, M. A.; Arst, H. N. Jr. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO Journal, v. 14, no. 4, p. 779-790, 1995. https://doi.org/10.1002/j.1460-2075.1995.tb07056.x

Wise, R. P.; Moscou, M. J.; Bogdanove, A. J.; Whitham, S. A. Transcript profiling in host-pathogen interactions. Annual Review of Phytopathology, v. 45, no. 1, p. 329-369, 2007. https://doi.org/10.1146/annurev.phyto.45.011107.143944