Vol. 4, No. 8, p. 293-300 - Dec. 31, 2017
Evaluation of mutagenic effects of pure hydroxyapatite doped with chromium (III) through the SMART Test in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae)
Silmara de Moraes Pantalećo







Abstract
Hydroxyapatite (HAP) is a bioceramic used in the medical and dental areas as a bone replacement factor due to its chemical similarity to the mineral phase of bones and teeth. Its use in implants stimulate the growth of bone tissue, showing no toxicity or rejection of the host tissue. Its nanostructured form has been shown to be a viable alternative for photoprotection when doped with metal ions, such as trivalent chromium (Cr+3). Due to the reach of this form among the population, this work evaluated the mutagenic potential of pure nanostructured hydroxyapatite (HAP) and doped with trivalent chromium (Cr+3) (HCrIII) by means of the Somatic Mutation and Recombination Test (SMART Test) on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) wings. Larvae resulting from standard crosses (ST) and high metabolic bioactivation (HB), treated with PAH and with HCrIII at concentrations 16.66 mg/mL, 8.33 mg/mL, and 4.16 mg/mL. As positive and negative controls, urethane and dodecyl sulfate sodium (SDS) were used, respectively. The frequencies of the different categories of mutant spots observed in offspring of HAP (HAP) and HCrIII treated crosses were not significantly different from those observed in the negative control. These data show that pure and chromium-doped (Cr+3) nanoestructured hydroxyapatite do not exhibit mutagenicity.
Keywords
Hydroxyapatite; Chromium; Somatic Mutation and Recombination Test; SMART Test; Mutagenicity.
DOI
10.21472/bjbs.040807
Full text
PDF
References
Araújo, T. S. Produção de hidroxiapatita pura e dopada para aplicação
em biosensores. São Cristóvão: Universidade Federal de Sergipe, 2006. (Master
dissertation)
Araújo, T. S.; Lima, T. A. R. M.; Nunes, R. S., Lalic, S. S. Produção de filtros solares
inorgânicos contendo hidroxiapatita. Anais do XXXI Encontro Nacional de Física da Matéria
Condensada, Águas de Lindóia, 2008.
Çavaş, T.; Ergene-Gözükara, S. Induction of micronuclei and nuclear abnormalities in
Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents.
Aquatic Toxicology, v. 74, no. 3, p. 264-271, 2005. https://doi.org/10.1016/j.aquatox.2005.06.001
Chai, C. S.; Ben-Nissan, B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. Journal of Materials
Science: Materials in Medicine, v. 10, n. 8, p. 465-469, 1999. https://doi.org/10.1023/A:1008992807888
Costa, R. M. A.; Menk, C. F. M. Biomonitoramento de mutagênese ambiental. Biotecnologia Ciência
& Desenvolvimento, v. 2, p. 24-26, 2000.
Dapkus, D.; Merrell, D. J. Chromosomal analysis of DDT-resistance in a long-term selected population of
Drosophila melanogaster. Genetics, v. 87, no. 4, p. 685-697, 1977. Available from: <http://www.genetics.org/content/genetics/87/4/685.full.pdf>.
Accessed on: Apr. 27, 2017.
Dourado, E. R. Preparação e caracterização de hidroxiapatita nanoestruturada dopada
com estrôncio. Rio de Janeiro: Centro Brasileiro de Pesquisas Físicas, 2006. (Master Dissertation).
Elliott, J. C. Structure and chemistry of the apatites and other calcium orthophosphates. Studdies in Organic
Chemistry, v. 18, p. 1-62, 1994. http://doi.org/10.1016/B978-0-444-81582-8.50006-7
Emerich, D. F.; Thanos, C. G. Nanotechnology and medicine. Expert Opinion on Biological Therapy, v. 3, no. 4,
p. 655-663, 2003. https://doi.org/10.1517/14712598.3.4.655
Frei, H.; Clements, J.; Howe, D.; Würgler, F. E. The genotoxicity of the anti-cancer drug mitoxantrone in somatic and
germ cells of Drosophila melanogaster. Mutation Research/Environmental Mutagenesis and Related Subjects,
v. 279, no. 1, p. 21-33, 1992. https://doi.org/10.1016/0165-1161(95)90018-7
Frei, H.; Würgler, F. E. Optimal experimental design and sample size for the statistical evaluation of data from
somatic mutation and recombination tests (SMART) in Drosophila. Mutation Research/Environmental Mutagenesis
and Related Subjects, v. 334, no. 2, p. 247-258, 1995. https://doi.org/10.1016/0165-1161(95)90018-7
Frei, H.; Würgler, F. E. Statistical methods to decide whether mutagenicity test data from Drosophila assays
indicate a positive, negative, or inconclusive result. Mutation Research/Environmental Mutagenesis and Related
Subjects, v. 203, no. 4, p. 297-308, 1988. https://doi.org/10.1016/0165-1161(88)90019-2
Graf, U.; Singer, D. Genotoxicity testing of promutagens in the wing somatic mutation and recombination test in
Drosophila melanogaster. Revista Internacional de Contaminación Ambiental, v. 8, p. 15-27,
1992. Available from: <http://www.revistascca.unam.mx/rica/index.php/rica/article/viewFile/29290/27245http://www.revistascca.unam.mx/rica/index.php/rica/article/viewFile/29290/27245>.
Accessed on: Mar. 23, 2017.
Graf, U.; Van Schaik, N. Improved high bioactivation cross for the wing somatic mutation and recombination test in
Drosophila melanogaster. Mutation Research/Environmental Mutagenesis and Related Subjects, v. 271,
no. 1, p. 59-67, 1992. https://doi.org/10.1016/0165-1161(92)90032-H
Graf, U.; Würgler, F. E.; Katz, A. J.; Frei, H.; Juon, H.; Hall, C. B.; Kale, P. G. Somatic mutation and
recombination test in Drosophila melanogaster. Environmental Mutagenesis, v. 6, no. 2, p. 153-188,
1984. https://doi.org/10.1002/em.2860060206
Hench, L. L. An introduction to bioceramics. 2. ed. Shanghai: Imperial College Press, 2013.
Kumar, G. S.; Girija, E. K.; Thamizhavel, A.; Yokogawa, Y.; Kalkura, S. N. Synthesis and characterization of bioactive
hydroxyapatite-calcite nanocomposite for biomedical applications. Journal of Colloid and Interface Science,
v. 349, no. 1, p. 56-62, 2010. https://doi.org/10.1016/j.jcis.2010.05.038
Lacerda, K. A.; Lameiras, F. S.; Silva, V. V. Avaliação da biodegradação de matrizes porosas
à base de hidroxiapatita para aplicação como fontes radioativas em braquiterapia. Química
Nova, v. 32, no. 5, p. 1216-1221, 2009. https://doi.org/10.1590/S0100-40422009000500025
Meibian, Z.; Zhijian, C.; Qing, C.; Hua, Z.; Jianlin, L.; Jiliang, H. Investigating DNA damage in tannery workers
occupationally exposed to trivalent chromium using comet assay. Mutation Research/Genetic Toxicology and
Environmental Mutagenesis, v. 654, no. 1, p. 45-51, 2008. https://doi.org/10.1016/j.mrgentox.2008.04.011
Nogueira, N. A. S. Sinterização de nanopartículas de NiAl2O4 por
gelatina comestível. Fortaleza: Universidade Federal do Ceará, 2005. (Master dissertation).
Okada, M.; Furuzono, T. Hydroxyapatite nanocrystal coating on biodegradable microspheres. Material Sciencie
and Engineering B, v. 173, no. 1/3, p. 199-203, 2010. https://doi.org/10.1016/j.mseb.2009.12.009
Sahoo, S. K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discovery Today,
v. 8, no. 24, p. 1112-1120, 2003. https://doi.org/10.1016/S1359-6446(03)02903-9
Seoane, A. I.; Dulout, F. N. Genotoxic ability of cadmium, chromium and nickel salts studied by kinetochore
staining in the cytokinesis-blocked micronucleus assay. Mutation Research/Genetic Toxicology and Environmental
Mutagenesis, v. 490, no. 2, p. 99-106, 2001. https://doi.org/10.1016/S1383-5718(00)00145-5
Tomoda K, Ariizumi H, Nakaji T, Makino K. Hydroxyapatite particles as drug carriers for proteins. Colloids
Surfaces B Biointerfaces, v. 76, n. 1, p. 226-235, 2010. https://doi.org/10.1016/j.colsurfb.2009.10.039
Trommer, R. M.; Santos, L. A.; Bergmann C. P. Obtenção e caracterização de revestimentos
de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição
química de vapor. Anais do 17o Congresso Brasileiro de Engenharia e Ciência dos Materiais,
Foz do Iguaçu, 2006.
Wang, S.; Lei, Y.; Zhang, Y.; Tang, J.; Shen, G.; Yu, R. Hydroxyapatite nanoarray-based cyanide biosensor. Analytical
Biochemistry, v. 398, no. 2, p. 191-197, 2010. https://doi.org/10.1016/j.ab.2009.11.029
Wang, P.; Li, C.; Gong, H.; Jiang, X.; Wang, H.; Li, K. Effects of synthesis conditions on the morphology of hydroxyapatite
nanoparticles produced by wet chemical process. Powder Technology, v. 203, no. 2, p. 315-321, 2010. https://doi.org/10.1016/j.powtec.2010.05.023