Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 4, no. 8 (2017) Pantaleão

 

Vol. 4, No. 8, p. 293-300 - Dec. 31, 2017

 

Evaluation of mutagenic effects of pure hydroxyapatite doped with chromium (III) through the SMART Test in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae)



Silmara de Moraes Pantalećo ; Marcio dos Santos ; Heriberto A. Anjos ; Alyne D. Lima ; Bruno Lassmar B. Valadares ; Rogeria Nunes and Maraisa B. de J. Feitosa

Abstract
Hydroxyapatite (HAP) is a bioceramic used in the medical and dental areas as a bone replacement factor due to its chemical similarity to the mineral phase of bones and teeth. Its use in implants stimulate the growth of bone tissue, showing no toxicity or rejection of the host tissue. Its nanostructured form has been shown to be a viable alternative for photoprotection when doped with metal ions, such as trivalent chromium (Cr+3). Due to the reach of this form among the population, this work evaluated the mutagenic potential of pure nanostructured hydroxyapatite (HAP) and doped with trivalent chromium (Cr+3) (HCrIII) by means of the Somatic Mutation and Recombination Test (SMART Test) on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) wings. Larvae resulting from standard crosses (ST) and high metabolic bioactivation (HB), treated with PAH and with HCrIII at concentrations 16.66 mg/mL, 8.33 mg/mL, and 4.16 mg/mL. As positive and negative controls, urethane and dodecyl sulfate sodium (SDS) were used, respectively. The frequencies of the different categories of mutant spots observed in offspring of HAP (HAP) and HCrIII treated crosses were not significantly different from those observed in the negative control. These data show that pure and chromium-doped (Cr+3) nanoestructured hydroxyapatite do not exhibit mutagenicity.


Keywords
Hydroxyapatite; Chromium; Somatic Mutation and Recombination Test; SMART Test; Mutagenicity.

DOI
10.21472/bjbs.040807

Full text
PDF

References
Araújo, T. S. Produção de hidroxiapatita pura e dopada para aplicação em biosensores. São Cristóvão: Universidade Federal de Sergipe, 2006. (Master dissertation)

Araújo, T. S.; Lima, T. A. R. M.; Nunes, R. S., Lalic, S. S. Produção de filtros solares inorgânicos contendo hidroxiapatita. Anais do XXXI Encontro Nacional de Física da Matéria Condensada, Águas de Lindóia, 2008.

Çavaş, T.; Ergene-Gözükara, S. Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquatic Toxicology, v. 74, no. 3, p. 264-271, 2005. https://doi.org/10.1016/j.aquatox.2005.06.001

Chai, C. S.; Ben-Nissan, B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, v. 10, n. 8, p. 465-469, 1999. https://doi.org/10.1023/A:1008992807888

Costa, R. M. A.; Menk, C. F. M. Biomonitoramento de mutagênese ambiental. Biotecnologia Ciência & Desenvolvimento, v. 2, p. 24-26, 2000.

Dapkus, D.; Merrell, D. J. Chromosomal analysis of DDT-resistance in a long-term selected population of Drosophila melanogaster. Genetics, v. 87, no. 4, p. 685-697, 1977. Available from: <http://www.genetics.org/content/genetics/87/4/685.full.pdf>. Accessed on: Apr. 27, 2017.

Dourado, E. R. Preparação e caracterização de hidroxiapatita nanoestruturada dopada com estrôncio. Rio de Janeiro: Centro Brasileiro de Pesquisas Físicas, 2006. (Master Dissertation).

Elliott, J. C. Structure and chemistry of the apatites and other calcium orthophosphates. Studdies in Organic Chemistry, v. 18, p. 1-62, 1994. http://doi.org/10.1016/B978-0-444-81582-8.50006-7

Emerich, D. F.; Thanos, C. G. Nanotechnology and medicine. Expert Opinion on Biological Therapy, v. 3, no. 4, p. 655-663, 2003. https://doi.org/10.1517/14712598.3.4.655

Frei, H.; Clements, J.; Howe, D.; Würgler, F. E. The genotoxicity of the anti-cancer drug mitoxantrone in somatic and germ cells of Drosophila melanogaster. Mutation Research/Environmental Mutagenesis and Related Subjects, v. 279, no. 1, p. 21-33, 1992. https://doi.org/10.1016/0165-1161(95)90018-7

Frei, H.; Würgler, F. E. Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila. Mutation Research/Environmental Mutagenesis and Related Subjects, v. 334, no. 2, p. 247-258, 1995. https://doi.org/10.1016/0165-1161(95)90018-7

Frei, H.; Würgler, F. E. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutation Research/Environmental Mutagenesis and Related Subjects, v. 203, no. 4, p. 297-308, 1988. https://doi.org/10.1016/0165-1161(88)90019-2

Graf, U.; Singer, D. Genotoxicity testing of promutagens in the wing somatic mutation and recombination test in Drosophila melanogaster. Revista Internacional de Contaminación Ambiental, v. 8, p. 15-27, 1992. Available from: <http://www.revistascca.unam.mx/rica/index.php/rica/article/viewFile/29290/27245http://www.revistascca.unam.mx/rica/index.php/rica/article/viewFile/29290/27245>. Accessed on: Mar. 23, 2017.

Graf, U.; Van Schaik, N. Improved high bioactivation cross for the wing somatic mutation and recombination test in Drosophila melanogaster. Mutation Research/Environmental Mutagenesis and Related Subjects, v. 271, no. 1, p. 59-67, 1992. https://doi.org/10.1016/0165-1161(92)90032-H

Graf, U.; Würgler, F. E.; Katz, A. J.; Frei, H.; Juon, H.; Hall, C. B.; Kale, P. G. Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, v. 6, no. 2, p. 153-188, 1984. https://doi.org/10.1002/em.2860060206

Hench, L. L. An introduction to bioceramics. 2. ed. Shanghai: Imperial College Press, 2013.

Kumar, G. S.; Girija, E. K.; Thamizhavel, A.; Yokogawa, Y.; Kalkura, S. N. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications. Journal of Colloid and Interface Science, v. 349, no. 1, p. 56-62, 2010. https://doi.org/10.1016/j.jcis.2010.05.038

Lacerda, K. A.; Lameiras, F. S.; Silva, V. V. Avaliação da biodegradação de matrizes porosas à base de hidroxiapatita para aplicação como fontes radioativas em braquiterapia. Química Nova, v. 32, no. 5, p. 1216-1221, 2009. https://doi.org/10.1590/S0100-40422009000500025

Meibian, Z.; Zhijian, C.; Qing, C.; Hua, Z.; Jianlin, L.; Jiliang, H. Investigating DNA damage in tannery workers occupationally exposed to trivalent chromium using comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, v. 654, no. 1, p. 45-51, 2008. https://doi.org/10.1016/j.mrgentox.2008.04.011

Nogueira, N. A. S. Sinterização de nanopartículas de NiAl2O4 por gelatina comestível. Fortaleza: Universidade Federal do Ceará, 2005. (Master dissertation).

Okada, M.; Furuzono, T. Hydroxyapatite nanocrystal coating on biodegradable microspheres. Material Sciencie and Engineering B, v. 173, no. 1/3, p. 199-203, 2010. https://doi.org/10.1016/j.mseb.2009.12.009

Sahoo, S. K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discovery Today, v. 8, no. 24, p. 1112-1120, 2003. https://doi.org/10.1016/S1359-6446(03)02903-9

Seoane, A. I.; Dulout, F. N. Genotoxic ability of cadmium, chromium and nickel salts studied by kinetochore staining in the cytokinesis-blocked micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, v. 490, no. 2, p. 99-106, 2001. https://doi.org/10.1016/S1383-5718(00)00145-5

Tomoda K, Ariizumi H, Nakaji T, Makino K. Hydroxyapatite particles as drug carriers for proteins. Colloids Surfaces B Biointerfaces, v. 76, n. 1, p. 226-235, 2010. https://doi.org/10.1016/j.colsurfb.2009.10.039

Trommer, R. M.; Santos, L. A.; Bergmann C. P. Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor. Anais do 17o Congresso Brasileiro de Engenharia e Ciência dos Materiais, Foz do Iguaçu, 2006.

Wang, S.; Lei, Y.; Zhang, Y.; Tang, J.; Shen, G.; Yu, R. Hydroxyapatite nanoarray-based cyanide biosensor. Analytical Biochemistry, v. 398, no. 2, p. 191-197, 2010. https://doi.org/10.1016/j.ab.2009.11.029

Wang, P.; Li, C.; Gong, H.; Jiang, X.; Wang, H.; Li, K. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, v. 203, no. 2, p. 315-321, 2010. https://doi.org/10.1016/j.powtec.2010.05.023