Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 4, no. 8 (2017) Pradeep Kumar

 

Vol. 4, No. 8, p. 247-258 - Dec. 31, 2017

 

Indirect somatic embryogenesis from transgenic immature leaf of safflower Carthamus tinctorius (Mohler, Roth, Schmidt & Boudreaux, 1967) (Asterales: Asteraceae)



S. Pradeep Kumar and B. D. Ranjitha Kumari

Abstract
Highly efficient protocol is developed for indirect somatic embryogenesis from transgenic immature leaf of safflower Carthamus tinctorius (Mohler, Roth, Schmidt & Boudreaux, 1967) (Asterales: Asteraceae) explants in solid culture. Here two different half strength mediums like MSG and EMM both were tested in addition to inorganic and organic nitrogen sources and also combination of the reference medium. Inorganic nitrogen source shows about 39.5 number of embryos with 37% embryo germination and organic nitrogen source like L-glutamine (20 μM) on reference medium influenced 80.5 number of somatic embryos with 44.9% germination. However, maximum of 92.0 number of embryo induction with 52.5% germination was noticed on CH (casein hydrolysate) (1.5 mg/L) containing medium. Combination of inorganic and organic nitrogen sources like NH4NO3 (40 µM) in combinations with reduced form of organic nitrogen casein hydrolysate (CH) (1.5 mg/L) was found to be most suitable for induction of somatic embryos with a maximum of 117 number of somatic embryos with 60.9% germination in immature leaf explants. About 57% plant conversion rate showed in NARI-6 cultivar after 2 weeks of culture. However it showed maximum plant conversion rate about 68% with basal medium along with 1.5% sucrose supplemented with GA3 (1.5 μM) and spermidine (1.0 μM). Germinated embryos with shoot and root poles were isolated and subcultured on suitable root induction medium containing NAA (2.5 μM) + AgNO3 (1.5 μM) showed maximum rooting frequency of about 69.6%.


Keywords
Chitinase gene; Hygromycin; Somatic Embryogenesis; Spermidine; Transgenic plantlets.

DOI
10.21472/bjbs.040803

Full text
PDF

References
Aydin, M.; Hossein Pour, A.; Haliloğlu, K.; Tosun, M. Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turkish Journal of Biology, v. 40, no. 6, p. 1178-1184, 2016. https://doi.org/10.3906/biy-1601-21

Becwar, M. R.; Wann, S. R.; Johnson, M. A.; Verhagen, S. A.; Feirer, R. P.; Nagmani, R. Development and characterization of in vitro embryogenic systems in conifers. In: Ahuja, M. R. (Ed.). Somatic cell genetics of woody plants. Dordrecht: Kluwer Academic, 1988. p. 1-18.

Bonneau, L.; Beranger-Novat, N.; Monin, J.; Martin Tanguy, J. Stimulation of root and somatic embryo production in Euonymus europaeus L. by an inhibitor of polyamine biosynthesis. Plant Growth Regulation, v. 16, p. 5 10, 1995. https://doi.org/10.1007/BF00040501

Chen, J. T.; Chang, W. C. TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant Cell, Tissue and Organ Culture, v. 79, no. 3, p. 315-320, 2004. https://doi.org/10.1007/s11240-004-4613-5

Conde, P.; Loureiro, J.; Santos, C. Somatic embryogenesis and plant regeneration from leaves of Ulmus minor Mill. Plant Cell Reports, v. 22, p. 632-639, 2004. https://doi.org/10.1007/s00299-003-0735-1

Cvikrova, M.; Binarova, P.; Cenklova, V.; Eder, J.; Machackova, I. Reinitiating of cell division and polyamine and monoamine levels in alfalfa explants during somatic embryogenesis. Physiologia Plantarum, v. 105, p.330–337, 1999. https://doi.org/10.1034/j.1399-3054.1999.105219.x

Dajue, L.; Mündel, H. H. Safflower (Carthamus tinctorius L.). In: Promoting the conservation and use of underutilized and neglected crops. 7. Gatersleben, Rome: Institute of Plant Genetic and Crop Plant Research, International Plant Genetic Resources Institute, 1996.

El Hadrami, I.; D'Auzac, J. Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. Journal of Plant Physiology, v. 140, no 1, p. 33-36, 1992. https://doi.org/10.1016/S0176-1617(11)81052-7

Feirer, R. P.; Wann, S. R.; Einspahr, D. W. The effects of spermidine synthesis inhibitors on in vitro plant development. Plant Growth Regulation, v. 3, no. 3/4, p. 319–327, 1985. https://doi.org/10.1007/BF00117589

Gaj, M. D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation, v. 43, no. 1, p.27–47, 2004. https://doi.org/10.1023/B:GROW.0000038275.29262.fb

Griga, M. Morphology and anatomy of Pisum sativum somatic embryos. Biologia Plantarum, v. 45, no. 2, p. 173-182, 2002. https://doi.org/10.1023/A:1015176118719

He, D. G.; Yang, Y. M.; Scott, K. J. The effect of macroelements in the induction of embryogenic callus from immature embryos of wheat (Triticum aestivum L). Plant Science, v. 64, no. 2, p. 251-258, 1989. https://doi.org/10.1016/0168-9452(89)90031-9

Kamada, H.; Harada, H. Studies on the organogenesis in carrot tissue cultures II. Effects of amino acids and inorganic nitrogenous compounds on somatic embryogenesis. Zeitschrift für Pflanzenphysiologie, v. 91, no. 5, p. 453-463, 1979. https://doi.org/10.1016/S0044-328X(79)80259-7

Kevers, C.; Le Gal, N.; Monteiro, M.; Dommes, J.; Gaspar, T. H. Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regulation, v. 31, no. 3, p. 209-214, 2000. https://doi.org/10.1023/A:1006344316683

Kim, S. W.; Oh, S. C.; Liu, J. R. Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell, Tissue and Organ Cult, v. 74, no. 1, p. 61-66, 2003. https://doi.org/10.1023/A:1023355729046

Leelavathi, S.; Sunnichan, V. G.; Kumria, R.; Vijaykanth, G. P.; Bhatnagar, R. K.; Reddy, V. S. A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Reports, v. 22, no. 7, p. 465-470, 2004. https://doi.org/10.1007/s00299-003-0710-x

Mandal, A. K. A.; Dutta Gupta, S. Direct somatic embryogenesis of safflower: a scanning electron microscopic study. Current Science, v. 83, p. 1138-1140, 2002. Available from: <http://www.currentscience.ac.in/cs/Downloads/article_id_083_09_1138_1140_0.pdf>. Accessed on: Feb. 18, 2017.

Mandal, A. K. A.; Dutta Gupta, S. Somatic embryogenesis of safflower: influence of auxin and ontogeny of somatic embryos. Plant Cell, Tissue and Organ Cult, v. 72, p. 27-31, 2003. https://doi.org/10.1023/A:1021264403398

Mandal, A. K. A.; Dutta Gupta, S.; Chatterji, A. K. Factors affecting somatic embryogenesis from cotyledonary explants of safflower. Biologia Plantarum, v. 44, no. 4, p. 503-507, 2001. https://doi.org/10.1023/A:1013722116224

Meijer, E. G. M.; Brown, D. C. W. Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell, Tissue and Organ Culture, v. 10, no. 1, p. 11-19, 1987. https://doi.org/10.1007/BF00037492

Minocha, R.; Smith, D. R.; Reeves, C.; Steele, K. D.; Minocha, S. C. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiologia Plantarum, v. 105, no. 1, p. 155-164, 1999. https://doi.org/10.1034/j.1399-3054.1999.105123.x

Murashige, T.; Skoog, F. O. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, v. 15, no. 3, p. 473-497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nabha, S.; Lamblin, F.; Gillet, F.; Lourain, D.; Fliniaux, M.; David, A.; Jacquin, A. Polyamine content and somatic embryogenesis in Papaver somniferum cells transformed with sam-1 gene. Journal of Plant Physiology, v. 154, p. 729-734, 1999. https://doi.org/10.1016/S0176-1617(99)80251-X

Pradeep Kumar, S.; Ranjitha Kumari, B. D. Factors affecting on somatic embryogenesis of safflower (Carthamus tinctorius L.) at morphological and biochemical levels. World Journal of Agricultural Sciences, v. 7, no. 2, p. 197-205, 2011. Available from: <https://www.idosi.org/wjas/wjas7(2)/16.pdf>. Accessed on: Feb. 18, 2017.

Santanen, A.; Simola, L. K. Changes in polyamine metabolism during somatic embryogenesis in Picea abies. Journal of Plant Physiology, v. 140, no. 4, p. 475-480, 1992. https://doi.org/10.1016/S0176-1617(11)80828-X

Sharma, S. K.; Millam, S. Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key developmental stages. Plant Cell Reports, v. 23, no. 3, p. 115-119, 2004. https://doi.org/10.1007/s00299-004-0814-y

Sri Shilpa, K.; Dinesh Kumar, V.; Sujatha, M. Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell, Tissue and Organ Culture, v. 103, no. 3, p. 387-401, 2010. https://doi.org/10.1007/s11240-010-9792-7

Tanaka, K.; Kanno, Y.; Kudo, S.; Suzuki, M. Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Reports, v. 19, no. 10, p. 946-953, 2000. https://doi.org/10.1007/s002990000225

Tiburcio, A. F.; Kaur-Sawhney, R.; Ingersoll, R. B.; Galston, A. W. Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus. Plant Physiology, v. 78, no. 2, p. 323-326, 1985. https://doi.org/10.1104/pp.78.2.323

Von Arnold, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, v. 69, no. 3, p. 233-249, 2002. https://doi.org/10.1023/A:1015673200621

Walker, K, A.; Sato, S, J. Morphogenesis in callus tissue of Medicago sativa: the role of ammonium ion on somatic embryogenesis. Plant Cell, Tissue and Organ Culture, v. 1, no. 1, p. 109-121, 1981. https://doi.org/10.1007/BF02318910

Yadav, J. S.; Rajam, M. V. Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena L. associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine. Journal of Experimental Botany, v. 48, no. 8, p. 1537-1545, 1997. https://doi.org/10.1093/jxb/48.8.1537

Zhang, Q.; Chen, J.; Henny, R, J. Direct somatic embryogenesis and plant regeneration from leaf, petiole, and stem explants of golden pothos. Plant Cell Reports, v. 23, no. 9, p. 587-595, 2005. https://doi.org/10.1007/s00299-004-0882-z