Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 4, no. 8 (2017) Singh

 

Vol. 4, No. 8, p. 223-231 - Dec. 31, 2017

 

Three crucial biological characteristics that's required for sustaining the livelihood of prokaryote and eukaryote cells



Rishan Singh

Abstract
Since living organisms will always form an important part of the ecosystem, it's imperative to achieve a view on how imbalances cause problems. The one way in attaining this view is by understanding the way in which cells behave in different environments, ranging from the native environment to tested conditions. Cell viability, respiratory events as well as metabolic and nuclear shutdown are some critical events that occur, generally, in prokaryote and eukaryote cells. The distinct characteristics between the two cell types enable an advanced understanding about the occurrence of those features and processes attained during medicinal, and other cell-based studies.


Keywords
Cell metabolism; Prokaryote; Eukaryote; Evolution; Chromosomal aberration.

DOI
10.21472/bjbs.040801

Full text
PDF

References
Aiston, S.; Andersen, B.; Agius, L. Glucose-6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase. Diabetes, v. 52, p. 1333-1339, 2003. Available from: <http://diabetes.diabetesjournals.org/content/diabetes/52/6/1333.full.pdf>. Accessed on: April 23, 2017.

Argaud, D.; Kirby, T. L., Newgard, C. B.; Lange, A. J. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. Journal of Biological Chemistry, v. 272, p. 12854-12861, 1997. https://doi.org/10.1074/jbc.272.19.12854

Brown, J. R.; Doolittle, W. F. Archae and the prokaryote-to-eukaryote transition. Microbiology and Molecular Biology Reviews, v. 61, no. 4, p. 456-502, 1997. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232621/pdf/610456.pdf>. Accessed on: Apr. 23, 2017.

Bruce, D. G.; Chisholm, D. J.; Storlien, L. H.; Kraegen, E. W. Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes, v. 37, no. 6, p. 736-744, 1988. https://doi.org/10.2337/diab.37.6.736

Chance, B.; Williams, G. R. The respiratory chain and oxidative phosphorylation. In: Nord, F. F. Advances in Enzymology and Related Areas of Molecular Biology. London: Wiley, 1956. v. 17, p. 65-134. https://doi.org/10.1002/9780470122624.ch2

Georgatos, S. D.; Pyrpasopoulou, A.; Theodoropoulos, P. A. Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule-driven deformation of the nuclear membrane. Journal of Cell Science, v. 110, p. 2129-2140, 1997. Available from: <https://pdfs.semanticscholar.org/8f7a/1bdf526ca1353f119855c1669773379f71cc.pdf>. Accessed on: Apr. 23, 2017.

Golstein, P.; Kroemer, G. Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, v. 32, no. 1, p. 37-43, 2007. https://doi.org/10.1016/j.tibs.2006.11.001

Holdenrieder, S.; Stieber, P. Apoptotic markers in cancer. Clinical Biochemistry, v. 37, no. 7, p. 605-617, 2004. https://doi.org/10.1016/j.clinbiochem.2004.05.003

Holland, H. D. Evidence for life on Earth more than 3850 million years ago. Science, v. 275, no. 5296, p 38-39, 1997. https://doi.org/10.1126/science.275.5296.38

Kondo, T.; Kondo, S. Autophagy and cancer therapy. Autophagy, v. 2, p. 85-90, 2006. https://doi.org/10.4161/auto.2.2.2463

Lee, J. Y.; Hwang, W. I.; Lima, S. T. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. Journal of Ethnopharmacology, v. 93, p. 409 415, 2004. https://doi.org/10.1016/j.jep.2004.04.017

Lockshin, R. A.; Zakeri, Z. Apoptosis, autophagy, and more. The International Journal of Biochemistry & Cellular Biology, v. 36, no. 12, p. 2405-2419, 2004. https://doi.org/10.1016/j.biocel.2004.04.011

Majno, G.; Joris, I. Apoptosis, oncosis and necrosis: an overview of cell death. American Journal of Pathology, v. 146, p. 3-15, 1995. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1870771/pdf/amjpathol00049-0010.pdf>. Accessed on: Apr. 23, 2017.

Martin-Piedra, M. A.; Garzon, I.; Celeste Oliveira, A.; Alfonso-Rodriquez, C. A.; Carriel, V.; Scionti, G.; Alaminos, M. Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy, v. 16, p. 266-277, 2004. http://dx.doi.org/10.1016/j.jcyt.2013.10.016

Mossman, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methodology, v. 65, no. 1/2, p. 55-63, 1983. https://doi.org/10.1016/0022-1759(83)90303-4

Noguchi, R.; Kubota, H.; Yugi, K.; Toyoshima, T.; Komori, Y.; Soga, T.; Kuroda, S. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. Molecular Systematics and Biology, v. 9, 664, 2013. https://doi.org/10.1038/msb.2013.19

Ordentlich, A.; Linzer, R. A.; Raskin, I. Alternative respiration and heat evolution in plants. Plant Physiology, v. 97, p. 1545-1550, 1991. https://doi.org/10.1104/pp.97.4.1545

Reape, T. J.; Molony, E. M.; McCabe, P. F. Programmed cell death in plants: distinguishing between different modes. Journal of Experimental Botany, v. 59, no. 3, p. 435-444, 2008. https://doi.org/10.1093/jxb/erm258

Rogers, H. J. Cell death and organ development in plants. Current Topics in Developmental Biology, v. 71, p. 225-261, 2005. https://doi.org/10.1016/S0070-2153(05)71007-3

Rothman, T .E.; Lenard, J. Membrane asymmetry. Science, v. 195, no. 4280, p. 743-753, 1977. https://doi.org/10.1126/science.402030

Salisbury, B. F.; Ross, W. C. Plant physiology. 5. ed. Belmont: Wadsworth Publ. Co., 2000.

Singh, R. Mycobacterium tuberculosis: telling a story of truths. Journal of Pure and Applied Microbiology, v. 5, no. 2, p. 541-544, 2011.

Sogin, M. L. Early evolution and the origin of eukaryotes. Current Opinion in Genetics and Development, v. 1, no. 4, p. 457-463, 1991. https://doi.org/10.1016/S0959-437X(05)80192-3

Storey, B. T. The respiratory chain of plant mitochondria. XI. Electron transport from succinate to endogenous pyridine nucleotide in mung bean mitochondria. Plant Physiology, v. 48, no. 6, p. 694-701, 1971. https://doi.org/10.1104/pp.48.6.694

Uphof, J. L. Y. Plant hair. Encyclopedia of Plant Anatomy, v. 4, no. 5, p. 1-206, 1962.

Van Cruchten, S.; Van Den Broeck, W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomy, Histology and Embryology, v. 31, no. 4, p. 214 223, 2002. https://doi.org/10.1046/j.1439-0264.2002.00398.x

Vellai, T.; Gábor, V. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceeding of the Royal Society of London B, v. 266, no. 1428, p. 1571-1577, 1999. https://doi.org/10.1098/rspb.1999.0817

Woese, C. R. Bacterial evolution. Microbiological Reviews, v. 51, no. 2, p. 221 271, 1987. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC373105/pdf/microrev00049-0051.pdf. Accessed on: Apr. 23, 2017.

Woese, C. R.; Fox, G. E. The concept of cellular evolution. Journal of Molecular Evolution, v. 10, no. 1, p. 1-6, 1977. https://doi.org/10.1007/BF01796132

Wolf, B. B.; Green, D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. Journal of Biological Chemistry, v. 274, p. 200049-20052, 1999. https://doi.org/10.1074/jbc.274.29.20049