Vol. 4, No. 7, p. 203-215 - Jun. 30, 2017
Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery
Farid Abu Shammala

Abstract
Most proteins are glycosylated, glycosylation is one of the most important posttranslational modifications of proteins and plays essential roles in various biological processes. Aberration in the glycan moieties of glycoproteins is associated with many diseases. It is especially critical to develop the rapid and sensitive methods for analysis of aberrant glycoproteins associated with diseases. With recent advances in proteomics, analytical and computational technologies, glycoproteomics, the global analysis of glycoproteins, is rapidly emerging as a subfield of proteomics with high biological and clinical relevance. Glycoproteomics integrates glycoprotein enrichment and proteomics technologies to support the systematic identification and quantification of glycoproteins in a complex sample. It is especially critical to develop the rapid and sensitive methods for analysis of aberrant glycoproteins associated with diseases. Mass spectrometry (MS) has become a powerful tool for mapping glycoprotein glycosylation and detailed glycan structural determination. Especially, tandem mass spectrometry can provide highly informative fragments for structural identification of glycoproteins. This review provides an overview of the development of MS technologies and their applications in identification of abnormal glycoproteins and glycans in human serum to screen cancer biomarkers in recent years.
Keywords
Mass spectrometry; Glycoproteins; Cancer biomarker.
DOI
10.21472/bjbs.040720
Full text
PDF
References
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, v. 422, p.198-207, 2003. https://dx.doi.org/10.1038/nature01511
An, H. J.; Froehlich, J. W.; Lebrilla, C. B. Determination of glycosylation sites and site-specific
heterogeneity in glycoproteins. Curr. Opin. Chem. Bio., v. 13, No. 4, p. 421-426, 2009.
Aoki-Kinoshita. K. F. An introduction to bioinformatics for glycomics research. PLoS Comput. Biol.,
v. 4, No. 4, p. 75-79, 2008. https://doi.org/10.1371/journal.pcbi.1000075
Bause, E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as
conformational probes. Biochem. J., v. 209, p. 331-336, 1983.
Carlson, D. M. Structures and immunochemical properties of oligosaccharides isolated from pig
submaxillary mucins. J. Biol. Chem., v. 243, p. 616-626, 1968.
Ciucanu, I.; Costello C. E. Elimination of oxidative degradation during the per-O-methylation of
carbohydrates. J. Am. Chem. Soc., v. 125, p. 16213-16219, 2003.
Ciucanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates.
Carbohydr. Res., v. 131, p. 209-217, 1984.
Colangelo, J.; Orlando, R. On-target exoglycosidase digestions/MALDI-MS for determining the
primary structures of carbohydrate chains. Anal. Chem., v. 71, p. 1479-1482, 1999.
Dell, A. FAB mass spectrometry of carbohydrates. Adv. Carbohydr. Chem. Biochem., v. 45,
p. 19-72, 1987.
Faid, V.; Chirat. F.; Seta. N.; Foulquier. F.; Morelle. W. A rapid mass spectrometric strategy
for the characterization of N- and O-glycan chains in the diagnosis of defects in glycan
biosynthesis. Proteomics, v. 7, p. 1800-1813, 2007.
Faid, V.; Evjen, G.; Tollersrud, O. K.; Michaslki, J. C.; Morelle, W. Site specific glycosylation
analysis of the bovine lysosomal alpha mannosidase. Glycobiology, v. 16, p. 440-461, 2006.
Fanayan, S.; Hincapie, M.; Hancock, W. S. Using lectins to harvest the plasma/serum glycoproteome.
Electrophoresis, v. 33, No. 12, p. 1746-1754, 2012.
Floyd, N.; Vijayakrishnan. B; Koeppe. J. R.; Davis. B. G. Thiyl glycosylation of olefinic proteins:
S linked glycoconjugate synthesis. Angew Chem. Int. Ed. Engl. Davis, v. 48, p. 7798-7802, 2009.
Hellerqvist. C. G. Linkage analysis using Lindberg method. Methods Enzymol., v.193, p. 554-573,
1990.
Huang, Y.; Konse, T.; Mechref, Y.; Novotny, M .V. Matrix-assisted laser desorption/ionization mass
spectrometry compatible beta-elimination of O-linked oligosaccharides. Rapid Commun. Mass Spectrom.,
v. 16, p. 1199-1204, 2002.
Huang, Y.; Mechref, Y.; Novotny, M. V. Microscale nonreductive release of O-linked glycans for subsequent
analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem., v. 73,
p. 6063-6069, 2001.
Kang, P.; Mechref, Y.; Klouckova, I.; Novotny, M. V. Solid-phase permethylation of glycans for
massspectrometric analysis. Rapid Commun. Mass Spectrom., v. 19, p. 3421-3428, 2005.
Kay, L. Q.; Gabrielson, E. H.; Zhang, H. Application of glycoproteomics for the discovery of
biomarkers in lung cancer. Proteomics Clin. Appl., v. 11, p. 244-256, 2012.
Kui Wong, N.; Easton, R. L.; Panico, M.; Sutton-Smith, M.; Morrison, J. C.; Lattanzio, F. A.; Morris,
H. R.; Clark, G. F.; Dell, A.; Patankar, M. S. Characterization of the oligosaccharides associated with
the human ovarian tumor marker CA125. J. Biol. Chem., v. 278, p. 28619-28634, 2003. https://doi.org/10.1074/jbc.M302741200
Küster, B.; Wheeler, S. F.; Hunter, A. P.; Dwek, R. A.; Harvey, D. J. Sequencing of N-linked
oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser
desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography.
Anal. Biochem., v. 250, p. 82-101, 1997.
Lazar, I. M.; Lee, W.; Lazar, A. C. Glycoproteomics on the rise: established methods, advanced techniques,
sophisticated biological applications. Electrophoresis, v. 34, No. 1, p. 113-125, 2013.
Lote, C. J.; Weiss, J. B. Identification in urine of a low-molecular-weight highly polar glycopeptide
containing cysteinyl-galactose. Biochem. J., v. 123, p. 25-29, 1971.
Morelle, W.; Bernard, M.; Debeaupuis, J.-P.; Buitrago, M.; Tabouret, M.; Latgé, J.-P.
Galactomannoproteins of Aspergillus fumigatus. Eukaryotic Cell, v. 4, No. 7,
p. 1308-1316, 2005a. https://dx.doi.org/10.1128/EC.4.7.1308-1316.2005
Morelle, W.; Canis, K.; Chirat, F.; Faid, V.; Michalski, J. C. The use of mass spectrometry for
the proteomic analysis of glycosylation. Proteomics, v. 6, p. 3993-4015, 2006a.
Morelle, W.; Donadio, S.; Ronin, C.; Michalski, J. C. Characterization of N-glycans of recombinant
human thyrotropin using mass spectrometry. Rapid Commun. Mass Spectrom., v. 20, p. 331-345, 2006b.
Morelle, W.; Faid, V.; Michalski, J C. Structural analysis of permethylated oligosaccharides using
electrospray ionization quadrupole time-of-flight tandem mass spectrometry and deutero-reduction.
Rapid Commun. Mass Spectrom., v. 18, p. 2451-2464, 2004.
Morelle, W.; Flahaut, C.; Michalski, J. C.; Louvet, A.; Mathurin, P.; Klein, A. Mass spectrometric
approach for screening modifications of total serum N-glycome in human diseases: application to
cirrhosis. Glycobiology, v. 16, No. 4, p. 281-293, 2006c. https://doi.org/10.1093/glycob/cwj067
Morelle, W.; Jimenez. J. C.; Cieniewski-Bernard. C.; Dei-Cas. E.; Michalski. J. C. Characterization
of the N-linked glycans of Giardia intestinalis. Glycobiology, v. 15, p. 549-559, 2005b.
Ohtsubo, K.; Marth. J. D. Glycosylation in cellular mechanisms of health and disease. Cell,
v. 126, p. 855-867, 2006.
Ongay, S.; Boichenko, A.; Govorukhina, N.; Bischoff, R. Glycopeptide enrichment and separation for
protein glycosylation analysis. J. Sep. Sci., v. 35, No. 18, p. 2341-2372, 2012.
Patel. T.; Bruce, J.; Merry, A.; Bigge, C.; Wormald, M.; Parekh, R.; Jaques, A. Use of hydrazine to
release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins.
Biochemistry, v. 32, No. 2, p. 679-693, 1993. https://dx.doi.org/10.1021/bi00053a037
Powell, A. K.; Harvey. D. J. Stabilization of sialic acids in N-linked oligosaccharides and gangliosides
for analysis by positive ion matrix-assisted laser desorption/ionization mass spectrometry.
Rapid Commun. Mass Spectrom., v. 10, p. 1027-1032, 1996.
Tarentino, A. L.; Plummer. T. H. Enzymatic deglycosylation of asparagine-linked glycans: purification,
properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum.
Methods Enzymol., v. 230, p. 44–57, 1994.
Taylor, A. M.; Holst, O.; Thomas-Oates, J. Mass spectrometric profiling of O-linked glycans released
directly from glycoproteins in gels using in-gel reductive β-elimination. Proteomics,
v. 5, p. 2936-2946, 2006.
Tian, Y.; Zhang, H. Glycoproteomics and clinical applications. Proteomics Clin. Appl., v. 11,
p. 124-132, 2010.
Tretter, V.; Altmann, F.; Marz. L. Peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F cannot
release glycans with fucose attached α1-3 to the asparagine linked N-acetylglucosamine residue.
Eur. J. Biochem., v. 199, p. 647-652, 1991.
Varki. A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology,
v. 3, p. 97-130, 1993.
Weim, X. L. Comparative glycoproteomics: approaches and applications. Brief. Funct. Genomic. Proteomic,
v. 8, p. 104-113, 2009.
Wheeler, S. F.; Harvey. D. J. Extension of the in-gel release method for structural analysis of neutral and
sialylated N-linked glycans to the analysis of sulfated glycans: application to the glycans from bovine
thyroid-stimulating hormone. Anal. Biochem., v. 296, p. 92-100, 2001.
Zaia. J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev., v. 23, p. 161-227, 2004.