Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 4, No. 7 (2017) Aïssatou

 

Vol. 4, No. 7, p. 67-80 - Jun. 30, 2017

 

Antihyperlipidemic and hypolipidemic properties of Tacca leontopetaloides (L.) Kuntze (Dioscoreales: Dioscoreaceae) tuber's aqueous extracts in the rats



Doubla Sali Aïssatou , Josiane Thérèse Ngatchic Metsagang , Celestin Dongmo Sokeng and Nicolas Yanou Njintang

Abstract
Tubers of Tacca leontopetaloides (L.) Kuntze (Dioscoreales: Dioscoreaceae) play an important role in food substitution during the periods of food shortage in occidental and central Africa. It is also used in traditional medicine for the treatment of the diarrhea, dysentery, stomach evil, viral hepatitis and the infection of guinea worn. This study attempted to evaluate the antihyperlipidemic and hypolipidemic properties of aqueous extracts of the tubers of T. leontopetaloides in rats. For this experimentation, two tests were done: antihyperlipidemic and hypolipidemic tests. Hyperlipidemia was induced in rats with High Fat Diet containing 300 g of egg yolk, 2 g of cholesterol, 250 g of coconut oil and 50 g of soya oil. The group of rats on which the antihyperlipidemic test was done was fed with High Fat Diet and supplemented with T. leontopetaloides aqueous extract at 27.34 mg/kg, and 54.68 mg/kg; after 21 days of experimentation, the different groups of rats were sacrificed. The lipid profile and some biochemical parameters were evaluated. Organs like kidneys, liver and stomach were taken for histopathological evaluation. For the hypolipidemic test, after three weeks of induction of hyperlipidemia, the diet was changed to normal diet and aqueous extract of tubers was given to rats during 21 days at doses of 3.41 mg/kg and 13.67 mg/kg. The animals were sacrificed after 21 days of experimentation. The lipid profile, some biochemical parameters and histopathology of organs were evaluated. The antihyperlipidemic and hypolipidemic tests of aqueous extract of the tubers of T. leontopetaloides induced reduction in total cholesterol, triglyceride, LDL-cholesterol and an increase in HDL-cholesterol significantly (p < 0.05); decreasing activities of ALAT and ASAT enzymes, levels of creatinin remained no changed. Histopathological study revealed that extracts did not repair the destructions of liver cells and glomerules of kidneys caused by High Fat Diet. Aqueous extract of tubers of T. leontopetaloides exhibits antihyperlipidemic and hypolipidemic activities; hence it could be important in the management of cardiovascular diseases.


Keywords
Tacca leontopetaloides; Antihyperlipidemia; Hypolipidemia; Saponins.

DOI
10.21472/bjbs.040708

Full text
PDF

References
Adom, K. K.; Sorrels, M. E.; Liu, R. H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food. Chem., v. 51, No. 26, p. 7825-7834, 2003. https://dx.doi.org/10.1021/jf030404l

Afrose, S.; Hossain, M. S; Tsujii, H. Effect of karaya saponin on serum and egg yolk cholesterol in laying hens. Br. Poult. Sci., v. 51, No. 6, p. 797-804, 2010. https://dx.doi.org/10.1080/00071668.2010.526924

Andreadou, I.; Iliodromitis, E. K.; Mikros, E.; Constantinou, M.; Agalias, A.; Magiatis, P.; Skaltsounis, A. L.; Kamber, E.; Tsantili-Kakoulidou, A.; Kremastinos, D. T. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J. Nutr., v. 136, No. 8, p. 2213-2222, 2006.

Astuti, D. A.; Wina, E.; Haryanto, B.; Suharti, S. Performa dan Profil Beberapa Komponen Darah Sapi Peranakan Ongole yang Diberi Pakan Mengandung Lerak (Sapindus rarak De Candole). Media Peternakan, v. 32, No. 1, p. 63-70, 2009. Available from: <http://medpet.journal.ipb.ac.id/index.php/mediapeternakan/article/view/1159/318>. Accessed on: Nov. 23, 2016.

Ballantyne, C. M. Treatment of dyslipidemia to reduce cardiovascular risk in patients with multiple risk factors. Clin. Cornerstone, v. 8, suppl. 6, p. S06-S13, 2007.

Bopanna, K. N.; Kannan, J.; Sushma, G.; Balaraman, R.; Rathore, S. P. Antidiabetic and antihyperglycemic of neenm seed kernel powder on alloxan diabetic rabbits. Ind. J. Pharmacol., v. 29, No. 3, p. 162-167, 1997.

Bourely, J. Observation sur le dosage de l'huile des graines de cotonnier. Coton et Fibres Tropicales, v. 27, No. 2, p. 183-196, 1982.

Caddick, L. R.; Wilkin, P.; Rudall, P. J.; Hedderson, T. A. J; Chase, M. W. Yams reclassified: a recircumscription of Dioscoreaceae and Dioscoreales. Taxon, v. 51, No. 1, p. 103-114, 2002. http://dx.doi.org/10.2307/1554967

Francis, G.; Kerem, Z.; Makkar, H. P.; Becker, K. The biological action of saponins in animal systems: a review. Br. J. Nutr., v. 88, No. 6, p. 587-605, 2002. https://dx.doi.org/10.1079/BJN2002725

Friedewald, W. T.; Levy, R. I.; Friedrickson, D. S. Determination of LDL cholesterol. In: Tietz, N. W. (Ed.). Textbook of Clinical Biochemistry. Washington, DC: AACC Press, 1972. p. 874-898.

Garine, I. Nourriture de brousse chez les Muzey et les Masa du Nord Cameroun. In: Raimond, C. Colloque International Méga-Tchad: Ressources Vivrières et Choix Alimentaires dans le Bassin du Lac Tchad, 2002.

Glässer, G.; Graefe, E. U.; Struck, F.; Veit, M.; Gebhardt, R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine, v. 9, No. 1, p. 33-40, 2002. https://dx.doi.org/10.1078/0944-7113-00080

Glick, M. R.; Ryder, K. W.; Jackson, S. A. Graphical comparisons of interferences in clinical chemistry instrumentation. Clin. Chem., v. 32, No. 3, p. 470-475, 1986. Available from: <http://clinchem.aaccjnls.org/content/clinchem/32/3/470.full.pdf>. Accessed on: Nov. 23, 2016.

Hamlat, N.; Neggazi, S.; Benazzoug, Y.; Kacimi, G.; Chaïb, S.; Aouichat-Bouguerra, S. Regime hyperlipidique et processus atherosclérose chez Rattus norvegecus. Science & Technologie C, No. 27, p. 49-56, 2008.

Harborne, J. B. Phytochemical methods. London, UK: Chapman Hall, 1991.

Henry, R. J. Clinical chemistry: principles and technics. 2. ed. New York: Harper and Row, 1974.

Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulphuric acid. Planta Medica, v. 29, p. 116-122, 1976. https://dx.doi.org/10.1055/s-0028-1097639

James, D. B.; Elebo, N.; Sanusi, A. M.; Odoemene, L. Some biochemical effect intraperitoneal administration of Phyllanthus amarus aqueous extracts on normal glycemic albinos rats. Asian J. Med. Sci., v. 2, No. 1, p. 7-10, 2010. Available from: <http://maxwellsci.com/print/ajms/v2-7-10.pdf>. Accessed on: Nov. 23, 2016.

Juźwiak, S.; Wójcicki, J.; Mokrzycki, K.; Marchlewicz, M.; Białecka, M.; Wenda-Rózewicka, L.; Gawrońska-Szklarz, B.; Droździk, M. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacological Reports, v. 34, p. 604-609, 2005. Available from: <http://www.if-pan.krakow.pl/pjp/pdf/2005/5_604.pdf>. Accessed on: Nov. 23, 2016.

Kay, D. E. Crops and product digest. 2. ed. London: Tropical Development and Research Institute, 1987. (No. 2, Root Crops).

Khanna, A. K; Rizvi, F; Chander, R. Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J. Ethnopharmacol., v. 82, No. 1, p. 19-22, 2002. http://dx.doi.org/10.1016/S0378-8741(02)00136-8

Kumar, S. A.; Avijit, M.; Saravanan, V. S. Antihyperlipidemic activity of Camellia sinensis leaves in Triton WR-1339 induced albino rats. Pharmacognosy Mag., v. 4, No. 13, p. 60-64, 2008.

Mahley, R. W.; Bersot, T. P. Drug therapy for hypercholesterolemia and dyslipidemia. In: Brunton, L. L. (Ed.). Goodman and Gillman's the pharmacological basis of therapeutics. 11. ed. New York: McGraw Hill, 2006. p. 933-966.

Makkar, H. P. S.; Blummel, M.; Borowy, N. K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food. Agric., v. 61, No. 2, p. 161-165, 1993. https://dx.doi.org/10.1002/jsfa.2740610205

Ndouyang, C. J.; Ejoh, A. R.; Bakar, A.; Facho, B.; Njintang, Y. N.; Mohammadou, B. A.; Mbofung, C. M. Propriétés physico-chimiques et fonctionnelles de Tacca leontopetaloides (L.) Kuntze, tubercule non conventionnel. e-Revue de Génie Industriel., No. 3, p. 34-45, 2009. Available from: <http://www.revue-genie-industriel.info/document.php?id=804. Accessed on: Nov. 23, 2016.

Oakenfull, D. G.; Fenwick, D. E.; Hood, R. L. Effects of saponins on bile acids and plasma lipids in rats. Br. J. Nutr., v. 42, p. 206-216, 1979. Available from: <https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0007114579000283>. Accessed on: Nov. 23, 2016.

Ransac, S.; Gargouri, Y.; Moreau, H.; Verger, R. Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). Eur. J. Biochem., v. 202, No. 2, p. 395-400, 1991. http://dx.doi.org/10.1111/j.1432-1033.1991.tb16387.x

Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxaloacetic acid and glutamic pyruvic transaminases. Am. J. Clin. Pathol., v. 28, p. 56-67, 1957.

Reynolds, K.; Chin, A.; Lees, K. A.; Nguyen, A.; Bujnowski, D.; He, J. A meta-analysis of the effect of soy protein supplementation on serum lipids. Am. J. Cardiol., v. 98, p. 633-640, 2006. https://dx.doi.org/10.1016/j.amjcard.2006.03.042

Richmond, W. Medical analysis. Clin. Chem., v. 19, p. 1350, 1973.

Raghuveer, R.; Sreeja, K.; Sindhuri, T.; Kumar, A. K. Antihyperlipidemic effect of Tagetes erecta in cholesterol fed hyperlipidemic rat. Der. Pharmacia Lettre, v. 3, p. 266-270, 2011. Available from: <http://www.scholarsresearchlibrary.com/articles/antihyperlipidemic-effect-of-tagetes-erecta-in-cholesterol-fedhyperlipidemic-rats.pdf>. Accessed on: Nov. 23, 2016.

Saghir, M. R.; Sadiq, S.; Nayak, S.; Tahir, M. U. Hypolipidemic effect of aqueous extract of Carum carvi (Black Zeera) seeds in diet induced hyperlipidemic rats. Pak. J. Pharm. Sci., v. 25, No. 2, p. 333-337, 2012.

Sodipo, O. A.; Abdulrahman, F. I; Sandabe, U. K, Akinniyi, J. A. Total lipids profile with aqueous fruit extract of Solanum macrocarpum Linn in rats. J. Pharm. Biores., v. 6, No. 1, p. 10-15, 2009.

Suresh, Y.; Das, U. N. Protective action of arachnidonic acid against alloxan induced cytotoxicity and diabetes mellitus. Prostaglandins Leukot. Essent. Fatty Acids, v. 64, No. 1, p. 37-49, 2001. https://dx.doi.org/10.1054/plef.2000.0236