Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 3, no. 6 (2016) Kamdem


Vol. 3, No. 6, p. 351-365 - Dec. 31, 2016


Effects of soil treated glyphosate on growth parameters and chlorophyll content of maize Zea mays L. and bean Phaseolus vulgaris L. plants

Michel Mathurin Kamdem , Nicolas Njintang Yanou and Juliane Filser

Extended use of glyphosate poses the problem of its accumulation into soil and further on crops. The objective of this study was to evaluate the effects of different doses of soil glyphosate on growth parameters and chlorophyll content of maize Zea mays L. and bean Phaseolus vulgaris L. plants. An experiment was arranged in randomized complete blocks design with ten replications. Glyphosate solutions were applied to the soil in six concentrations, two subdoses of 0.1 and 0.2 g, the recommended dose of 0.4 g and three overdoses of 0.6, 0.8 and 1.0 g kg-1 of soil. An uncontaminated soil control was used. At 21, 28, 35 and 42 days after sowing (DAS), evaluations of plant height, number of leaves, stem diameter, leaf surface and plant injury were conducted. At 42 DAS, nodulation (in bean), root length, chlorophyll and dry matter yield were assessed. Already at the recommended dose and beyond, glyphosate caused significant damage to growth characteristics, nodulation and chlorophyll content in both plants. Some similar effects of the product were observed on the both plants at each time period. Therefore, there was an evidence that soil glyphosate already at the recommended dose had an inhibitory and even a phytocide effects on non-target plants.

Common bean; Maize; Glyphosate doses; Plant growth; Chlorophyll.


Full text

Al-Abdulsalam, M. A.; Abdulsalam, K. S. Effect of plant density and certain pesticides on growth, yield and rhizobium nodulation of faba bean (Vicia faba L.). J. King Saud Univ., v. 7, no. 2, p. 249-257, 1995.

Anderson, J. A.; Kolmer, J. A. Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Dis., v. 89, no. 11, p. 1136-1142, 2005.

Andy, K. C.; Purcell, L. C.; Vories, E. D. Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agro. J., v. 93, no. 1, p. 179-186, 2001.

Arnon, D. I. Copper enzymes in isolated chloroplasts: polyphenyl peroxidase in Beta vulgaris. Plant Physiol., v. 24, no. 1, p. 1-15, 1949.

Beale, S. I. δ-Aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Ann. Rev. Plant. Physiol., v. 29, p. 95-120, 1978.

Bellaloui, N.; Reddy, K. N.; Zablotowicz, R. M.; Mengistu, A. Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean. J. Agric. Food Chem., v. 54, no. 9, p. 3357-3364, 2006.

Boudet, A. M.; Graziana, A.; Ranjeva, R. Recent advances in the regulation of the prearomatic pathway. In: Van Sumere, C. F.; Lea, P. J. (Eds.). Ann. Proc. Phytochem. Soc. Europe. Oxford: Claredon Press, 1985. p. 135 159. v. 25.

Carvalho, L. B.; Alves, P. L. C. A.; Duke, S. O. Hormesis with glyphosate depends on coffee growth stage. Anais da Academia Brasileira de Ciências, v. 85, no. 2, p. 813-821, 2013.

Cerdeira, A. L.; Duke, S. O. The current status and environmental impacts of glyphosate-resistant crops: a review. J. Environ. Qual., v. 35, p. 1633-1658, 2006.

Cooke, R. D. Food Insecurity ACP Countries: politics and intervention programs of vulnerable groups. Report and Recommendation of the CTA Seminar, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 1998. p. 19.

Cornish, P. S.; Burgin, S. Residual effects of glyphosate herbicide in ecological restoration. Restor. Ecol., v. 13, no. 4, p. 695-702, 2005.

Costa, N. V.; Erasmo, E. A. L.; Queiroz, P. A.; Dornelas, D. F.; Dornelas, B. F. Effect of simulated glyphosate drift on the initial growth of physic nut plants. Planta Daninha, v. 27, p. 1105-1110, 2009.

Coutinho, C. F. B.; Mazo, L. H. Complexos metálicos com o herbicida glyphosate: revisão. Química Nova, v. 28, no. 6, p. 1038-1045, 2005.

Crozier, A.; Kamiya, Y.; Bishop, G.; Yokota, T. Biosynthesis of hormones and elicitor molecules. In: Buchanan, B. B.; Cruissem, W.; Jones, R. L. (Eds.). Biochemistry and Molecular Biology of plants. New York: American Society of plant Physiologists, 2000. p. 850-928.

Ding, W.; Reddy, K. N.; Zablotowicz, R. M.; Bellaloui, N.; Bruns, H. A. Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethyl-phosphonic acid, a metabolite of glyphosate. Chemosphere, v. 83, p. 593-598, 2011a.

Ding, W.; Reddy, K. N.; Krutz, L. J.; Thomson, S. J.; Huang, Y.; Zablotowicz, R. M. Biological response of soybean and cotton to aerial glyphosate drift. J. Crop Improv., v. 25, p. 291 302, 2011b.

Eberbach, P. L.; Douglas, L. A. Effect of herbicide residues in a sandy loam on the growth, nodulation and nitrogenase activity (C2H2/C2H4) of Trifolium subterraneum. Plant and Soil, v. 131, no. 1, p. 67-76, 1991.

Eker, S.; Ozturk, L.; Yazici, A.; Erenoglu, B.; Romheld, V.; Cakmak, I. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J. Agric. Food Chem., v. 54, no. 26, p. 10019-10025, 2006.

El-Tayeb, M. A.; Zaki, H. Cytological Response of Vicia faba to a glyphosate-based herbicide. American-Eurasian J. of Agron., v. 2, no. 3, p. 168-175, 2009.

Fox, J. E.; Gulledgge, J.; Engelhaupt, E.; Burow, E.; McLachlan, J. A. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc. Nati. Acad. Sci. USA, v. 104, no. 24, p. 10282-10287, 2007.

França, A. C.; Freitas, M. A. M.; Fialho, C. M. T.; Silva, A. A.; Reis, M. R.; Galon, L.; Victoria Filho, R. Growth of arabica coffee cultivars submitted to glyphosate doses. Planta Daninha, v. 28 no. 3, p. 599-607, 2010.

Galon, L.; Ferreira, F. A.; Silva, A. A.; Concenço, G.; Ferreira, E. A.; Barbosa, M. H. P.; Silva, A. F.; Aspiazú, I.; França, A. C.; Tironi, S. P. Influence of herbicides on the photosynthetic activity of surgacane genotypes. Planta Daninha, v. 28, no. 3, p. 591-597, 2010.

Gomez, E.; Ferreras, L.; Lovotti, L.; Fernandez, E. Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. European Journal of Soil Biology, v. 45, p. 163-167, 2008.

Gravena, R.; Victoria Filho, R.; Alves, P. L. C. A.; Mazzafera, P.; Graven, A. R. Low glyphosate rates do not affect Citrus limona L. Osbeck seedlings. Pest Management Science, v. 65, no. 4, p. 420-425, 2009.

Huang, Y.; Thomson, S. J.; Molin, W. T.; Reddy, K. N.; Yao, H. Early detection of soybean plant injury from glyphosate by measuring chlorophyll reflectance and fluorescence. J. Agric. Sci., v. 4, no. 5, p. 117-124, 2012.

Jiang, J. X.; Wan, N. F. A model for ecological assessment to pesticide pollution management. Eco. Model, v. 220, no. 15, p. 1844-1851, 2009.

Johal, G. S.; Huber, D. M. Glyphosate effects on diseases of plants. European Journal of Agronomy, v. 31, no. 3, p. 144-152, 2009.

King, C. A.; Purcell, L. C.; Vories, E. D. Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agron. J., v. 93, p. 179-186, 2001.

Koopman, D. J.; Tow, P. G.; Reeves, T. G.; Gibson, A. H. Soil acidification, chlorsulfuron application and Rhizobium meliloti as factors in lucerne yield decline. Soil Bio. and Bioch., v. 27, p. 673-677, 1995.

Kremer, R. J.; Means, N. E. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. European Journal of Agronomy, v. 31, n. 3, p. 153-161, 2009.

Machado, A. F. L.; Ferreira, L. R.; Santos, L. D. T.; Ferreira, F. A.; Viana, R. G.; Machado, M. S.; Freitas, F. C. L. Photosynthetic efficiency and water use in Eucalyptus plants sprayed with glyphosate. Planta Daninha, v. 28, n. 2, p. 319-327, 2010.

Marenco, R. A.; Lopes, N. F.; Mosquim, P. R. Nodulation and nitrogen fixation in soybeans treated with herbicides. Revista Brasileira de Fisiologia Vegetal, v. 5, no. 2, p. 121-126, 1993.

Mårtensson, A. M. Effects of agrochemicals and heavy metals on fast-growing rhizobium and their symbiosis with small-seeded legumes. Soil Bio. and Bioch., v. 24, no. 5, p. 435-445, 1992.

Meier, J. R.; Smith, K. L.; Scott, R. C.; Doherty, R. C. Rice cultivar response to low glyphosate rates as influenced by growth stage. AAES Research Series, 550, 2006.

Mitra, J.; Raghu, K. Pesticides-non target plants interactions: an overview. Arch. Agron. Soil Sci., v. 43, no. 6, p. 445-500, 1998.

Ngakou, A.; Megueni, C.; Ousseni, H.; Massai, A. Study on the isolation and characterization of rhizobia strains as biofertilizer tools for growth improvement of four grain legumes in Ngaoundéré-Cameroon. Int. J. Biol. Chem. Sci., v. 3, no. 5, p. 1078-1089, 2009.

Nilsson, G. Effects of glyphosate on the amino acid content in spring wheat plants. Swedish J. Agric. Res., v. 7, no. 3, p. 153-157, 1977.

Nollet, L. M. L.; Rathore, H. S. Handbook of pesticides: methods of pesticide residues analysis. New York: CRC Press/Taylor & Francis, 2010.

Ozturk, L.; Yazici, A.; Eker, S.; Gokmen, O.; Roemheld, V.; Cakmak, I. Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol., v. 177, v. 4, p. 899906, 2008.

Petróczi, I. M.; Matuz, J.; Kótai, C. Study of pesticide side-effects in winter wheat trials. Acta Bio. Szeged., v. 46, n. 3/4, p. 207-208, 2002.

Priso, R. J.; Dibong, S. D.; Tchinda, M. C.; Taffouo, V. D.; Ndongo, D.; Amougou, A. Impacts des eaux polluées sur la croissance, les teneurs en chlorophylles et substances organiques dans les feuilles de deux Poaceae. Int. J. Biol. Chem. Sci., v. 4, no. 4, p. 1122-1129, 2010.

Reddy, K. N.; Rimando, A. M.; Duke, S. O. Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food. Chem., v. 52, no. 16, p. 5139-5143, 2004.

Sarmamy, I.; Khidir, S. M.; Abdul-ghany, O. Effects of some soil treated pesticides on growth characteristics of faba bean and wheat plants. IJETCAS, v. 5, no. 1, p. 7-20, 2013.

Shaban, S. A.; El-Hattab, A. H.; Hassan, E. A.; Abo-Elsuoud, M. R. Recovery of faba bean (Vicia faba L.) plants as affected by glyphosate. J. Agro. and Crop Sci., v. 158, no. 5, p. 294-303, 1987.

Simonsen, L.; Fomsgard, I. S.; Svensmark, B.; Spliid, N. H. Fate and availability of glyphosate and AMPA in agricultural soil. J. Environ Sci. Health B, v. 43, no. 5, p. 365-375, 2008.

Stanley, P.; Burg, S. P. Ethylene in Plant Growth. Proceed. Nati. Acad. Sci. USA, v. 70, no. 2, p. 591-597, 1973.

Stenersen, J. Chemical pesticides: mode of action and toxicology. Washington, D.C.: CRC Press, 2004.

Swift, M. J.; Bignell, D. E.; Huang, S. P.; Cares, J. E. Moreira, F.; Pereira, E. G.; Nwaga, D.; Holt, J. A.; Hauser, S. Standard methods for assessment of soil biodiversity and land use practice. The ASA Review Meeting 1999, ASB Project, Bogor, Indonesia, ICRAF, 2001. v. 1. 40 p.

Yao, H.; Huang, Y.; Hruska, Z.; Thomson, S. J.; Reddy, K. N. Using vegetation index and modified derivative for early detection of soybean plant injury from glyphosate. Computers and Electronics in Agriculture, v. 89, p. 145-157, 2012.

Zablotowicz, R. M.; Reddy, K. N. Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a mini review. J. Environ. Qual., v. 33, no. 3, p. 825-831, 2004.

Zablotowicz, R. M.; Reddy, K. N. Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate resistant soybean. Crop Protection, v. 26, p. 370-376, 2007.

Zobiole, L. H. S.; Oliveira, R. S.; Huber, D. M.; Constantin, J.; Castro, C.; Oliveira, F. A.; Oliveira, A. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans. Plant Soil, p. 57-69, 2009.