Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 3, no. 6 (2016) Mukherjee


Vol. 3, No. 6, p. 299-317 - Dec. 31, 2016


An ex situ and in vitro approach to delineate pennate diatom species with bioindicator potentials in a well mixed tropical estuarine ecosystem

Abhishek Mukherjee , Subhajit Das , Sabyasachi Chakraborty and Tarun Kumar De

An experiment was performed on selected pennate diatom species collected from the well mixed waters of the Hooghly Estuary with the aim of distinguishing the ones with qualities to be employed as monitors of their ecosystem. The Hooghly Estuary is enriched with domestic, sewage and agricultural effluents and coastal upwelling along with tide-mediated advective circulation from the mangrove forests ensure concomitant nutrient pool replenishment in this ecoregion. There have been several attempts to establish certain centric diatom species as bioindicators in various parts of the world owing to their better responsiveness to sudden shifts in stoichiometry but hardly any with pennate diatoms. Pennate diatoms are typical benthic mat formers in the intertidal regions, on submerged surfaces and thus bear greater feasibility to be employed as accurate pointers to long term deviations in their respective ecosystems, in spite of the greater sensitivity of the centric diatoms. The study was carried out in laboratory controlled environment to minimize the interference from other extrinsic factors compromising the outcome and also due to the fact that such studies to be performed in natural conditions require a decent financial support and time to conclusively arrive upon the objectives. From the present endeavour it was inferred that Nitzschia sigmoidea, Pleurosigma angulatum and Ulnaria oxyrhyncus (formerly Synedra ulna var. oxyrhyncus) stood a good chance of being recruited as bioindicators to eutrophic well mixed estuaries, similar to the one they had been sampled from.

Pennate; Diatoms; Hooghly Estuary; Well mixed estuary; Bioindicators.


Full text

Al-Kandari, M.; Al-Yamani, F. Y.; Al-Rifaie, K. Marine Phytoplankton Atlas of Kuwait's Waters. Kuwait: Kuwait Institute for Scientific Research, 2009.

Daufresne, M.; Lengfellner, K.; Sommer, U. Global warming bene?ts the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA, v. 106, p. 12788-12793, 2009.

Desikachary, T. V. Atlas of diatoms. Madras: Madras Science Foundation, 1986-1989. (v. 1-6, 809 plates).

DiTullilo, G. R.; Hutchins, D. A.; Bruland, K. W. Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol. Oceanogr., v. 38, no. 3, p. 495-508, 1993.

Dugdale, R. C.; Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr., v. 12, p. 196 206, 1967.

Dugdale, R. C.; Wilkerson, F. P.; Barber, R. T.; Chavez, F. P. Estimating new production in the equatorial Pacific Ocean at 150o W. J. Geophys Res., v. 97, no. C1, p. 681-686, 1992.

Gagneux-Moreaux, S.; Moreau, C.; Gonzalez, J. L.; Cosson, R. P. Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. J. Phycol., v. 19, no. 5, p. 549-556, 2007.

Grasshoff, K.; Ehrhardt, M.; Kremling, K. Methods of seawater analysis. In: Grasshoff, K.; Ehrhardt, M.; Kremling, K. (Eds). Das Verlagsprogramm umfasst die Bereiche Chemie GmbH, 1983.

Graziano, L. M.; La Roche, J.; Geider, R. J. Physiological response to phosphorus limitation in batch and steady-state cultures of Dunaliella tertiolecta (Chlorophyta): a unique stress protein as an indicator of phosphate deficiency. J. Phycol., v. 32, no. 5, p. 825-838, 1996.

Hasle, G. R.; Syvertsen, E. R. Marine diatoms. In: Tomas, C. R. (Ed.). Identifying marine phytoplankton. London: Academic Press, 1997. p. 5-385.

Hecky, R. E.; Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr., v. 33, no. 4, pt. 2, p. 796-822, 1988.

Hotzel, G.; Croome, R. A. Phytoplankton methods manual for Australian freshwaters. Australia: Land and Water Resources Research and Development Corporation, 1999.

Kolkwitz, R.; Marsson, M. Ecology of plant saprobia. In: Keup, L. E.; Ingram, W. M.; Mackenthun, K. M. (Eds.). Biology of water pollution. Washington: Federal Water Pollution Control Administration, 1908. p. 47-52.

Lange-Bertalot, H. Pollution tolerance of diatoms as a criterion for water quality estimation. Beih. Nova Hedwigia, v. 64, no. 1, p. 285-304, 1979.

Martin, J. H. ; Coale, K. H.; Johnson, K. S.; Fitzwater, S. E.; Gordon, R. M.; Tanner, S. J.; Hunter, C. N.; Elrod, V. A.; Nowicki, J. L.; Coley, T. L.; Barber, R. T.; Lindley, S.; Watson, A. J.; Van Scoy, K.; Law, C. S.; Liddicoat, M. I.; Ling, R.; Stanton, T.; Stockel, J.; Collins, C.; Anderson, A.; Bidigare, R.; Ondrusek, M.; Latasa, M.; Millero, F. J.; Lee, K.; Yao, W.; Zhang, J. Z.; Friederich, G.; Sakamoto, C.; Chavez, F.; Buck, K.; Kolber, Z.; Greene, R.; Falkowski, P.; Chishol, S. W.; Hoge, F.; Swift, R.; Yungel, J.; Turner, S.; Nightingale, P.; Hatton, A.; Liss, P.; Tindale, N. W. Testing the iron hypothesis in ecosystems of the Equatorial Pacific Ocean. Nature, v. 371, p. 123-129, 1994.

Morel, F. M. M. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol., v. 23, p. 137-150, 1987.

Mukherjee, A.; De, M.; Maiti, T. K.; De, T. K. Use of dominant centric diatoms of well mixed tropical estuaries as indicators to nutrient rich environments. Int. J. Adv. Lif. Sci., v. 7, no. 2, p. 329-337, 2014. Available from: <>. Accessed on: Mar. 16, 2016.

Mukherjee, A.; Das, S.; Chakraborty, S.; De, T. K. Laboratory experiment reveals some key factors behind auxospore induction in two ubiquitous centric diatoms of Hooghly Estuary, Bay of Bengal, India. Int. J. Pure App. Biosci., v. 3, no. 3, p. 94-104, 2015. Available from: < Volume 3, issue 3/IJPAB-2015-3-3-94-104.pdf>. Accessed on: Mar. 16, 2016.

Mukherjee, A.; Das, S.; Chakraborty, S.; De, T. K. Study on mangrove associated estuarine waters of Northeastern Bay of Bengal reveals potential diatom indicators of dissolved inorganic compounds. Braz. J. Biol. Sci., v. 2, n. 3, p. 155-168, 2015. 10.21472/bjbs.020316

Mukhopadhyay, S. K.; Biswas, H.; De, T. K.; Jana, T. K. Fluxes of nutrients from the tropical River Hoogly at the land-ocean boundary of Sundarban, NE coast of Bay of Bengal, India. J. Mar. Syst., v. 62, no. 1/2, p 9-21, 2006.

Patrick, R.; Strawbridge, D. Variation in the structure of natural diatom communities. Am. Nat., v. 97, p. 51-57, 1963. Available from: <>. Accessed on: Mar. 16, 2016.

Poulíčková, A.; Duchoslav, M.; Dokulil, M. Littoral diatom assemblages as indicators of lake trophic status: a case study from perialpine lakes in Austria. Eur. J. Phycol., v. 39, p. 143-152, 2004.

Price, N. M.; Ahner, B. A.; Morel, F. M. M. The Equatorial Pacific Ocean: grazer-controlled phytoplankton populations in an iron-limited ecosystem. Limnol. Oceanogr., v. 39, no. 3, p. 520-539, 1994.

Redfield, A. C.; Ketchum, B. H.; Richards, F. A. The influence of organisms on the composition of seawater. In: Hill, M. N. (Ed.). The composition of seawater: comparative and descriptive oceanography. The sea: ideas and observations on progress in the study of the seas. 2. ed. New York: Wiley Interscience, 1963. p. 26-77.

Smith, S. V.; Atkinson, M. J. Phosphorus limitation of net production in a confined aquatic ecosystem. Nature, v. 307, p. 626-627, 1984.

Strickland, J. D. H.; Parsons, T. R. A practical handbook of seawater analysis. Fish Res. Board Canada, 1968.

Sun, J.; Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., v. 25, no. 11, p. 1331-1346, 2003.

Timmermans, K. R. Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol. Oceanogr., v. 46, p. 260-266, 2001.

UNESCO. Convention Concerning the Protection of the World Cultural and Natural Heritage. Paris: UNESCO, 1999. Available from: <>. Accessed on: Mar. 16, 2016.

Zelinka, M.; Marvan, P. Zur Präzisierung der biologischen Klassifikation des Rheinheit fliessender Gewässer. Arch. Hydrobiol., v. 57, p. 389-407, 1961.