Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 3, no. 6 (2016) Sharma


Vol. 3, No. 6, p. 279-284 - Dec. 31, 2016


Production of xylanase under solid state fermentation using different agricultural and horticultural residue by Myceliopthora thermophila SH1 (Ascomycota: Chaetomiaceae)

Nivedita Sharma , Shruti Pathania and Shweta Handa

An abundant amount of agricultural/horticultural waste were generated from agricultural and industrial processing. However, such wastes usually have a composition rich in sugars, minerals and proteins, and therefore, they should not be considered "wastes" but raw materials for other industrial processes. The purpose of the present work was to optimize the xylanase production by Myceliopthora thermophila SH1 (Ascomycota: Chaetomiaceae) an alkalothermophilic strain isolated from hot spring of Himachal Pradesh under solid state fermentation using different agricultural wastes/horticultural waste as a substrate by enrichment with basal salt medium at temperature 45 oC after incubating it for 7 days. The highest level of enzymes was produced using rice bran, orange pulp, sugarcane bagasse, wheat straw, wheat bran, apple pomace as a substrate. The secreted extracellular enzyme presented a property that matches the requirement in industrial environment.

Agricultural residue; Horticultural waste; Xylanase; M. thermophila SH1; SSF.


Full text

Beg, Q. K.; Kapoor, M.; Bhushan, B.; Hoondal, G. S. Microbial xylanase and their industrial applications: a review. Applied Microbiology and Biotechnology, v. 22, p. 326-338, 2001.

Bhat, M. K. Cellulases and related enzymes in biotechnology. Biotechnology Advances, v. 18, no. 5, p. 355-383, 2000.

Bollag, D. M.; Edelstein, S. J. Protein methods. New York: Wiley and Sons 1993.

Briggs, S. R.; Cuttle, S.; Goodlass G.; Hatch, D.; King, J.; Roderick, S.; Shepherd, M. Soil nitrogen building crops in organic farming. Defra Research prRoject OF0316. Project publication, 2005.

Kauppinen, T.; Teschke, K.; Savela, A.; Kogevinas, M.; Boffetta, P. International database of exposure measurements in the pulp, paper and paper product industries. Int. Arch. Occup. Environ. Health, v. 70, p. 119-127, 1997.

Kim, J. H.; Kim, S. C.; Nam, S. W. Constitutive over expression of the endoxylanase gene in Bacillus subtilis. Journal of Micrbiology and Biotechnology, v. 10, p. 551-553, 2000.

Kuhad, R. C.; Singh, A.; Eriksson, K. E. L. Microorganisms and enzymes involved in the degradation of plant fiber cell wall. In: Eriksson, K.-E. L.; Babel, W.; Blanch, H. W.; Cooney, Ch. L.; Enfors, S.-O.; Eriksson, K.-E L.; Fiechter, A.; Klibanov, A. M.; Mattiasson, B.; Primrose, S. B.; Rehm, H. J.; Rogers, P. L.; Sahm, H.; Schügerl, K.; Tsao, G. T.; Venkat, K.; Villadsen, J.; von Stockar, U.; Wandrey, C. (Eds.). Biotechnology in the pulp and paper industry. Berlin: Springer-Verlag, 1997. p. 45-125. (Advances in Biochemical Engineering and Biotechnology, v. 57).

Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin-phenol reagent. Journal of Biology and Chemistry, v. 193, p. 265-275, 1951.

Lynd, L. R.; Zyl, W. H.; McBride, J. E.; Laser, M. Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, v. 16, no. 5, p. 577-583, 2005.

Malherbe, S.; Cloete, T. E. Lignocellulose biodegradation: fundamentals and applications. Review in Environmental Sciences and Biotechnology, v. 1, no. 2, p. 105-114, 2002.

Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, v. 31, no. 3, p. 426-428, 1959.

Pandey, A. Solid state fermentation. Biochemical Engineering Journal, v. 36, no. 2/3, p. 81-84, 2003.

Sharma, N.; Vyas, G.; Pathania, S. Culturable diversity of thermophilic microorganisms found in hot springs of Northern Himalayas and to explore their potential for production of industrially important enzymes. Scholars Academic Journal of Biosciences, v. 1, no. 5, p. 165-178, 2013. Available from: <>. Accessed on: Jan. 10, 2016.

Sharma, P.; Bajaj, B. K. Production and partial characterization of alkali-tolerant xylanase from an alkalophilic Streptomyces sp. CD-3. Journal of Scientific and Industrial Research, v. 64, p. 688-697, 2005. Available from: < 64(9) 688-697.pdf>. Accessed on: Jan. 10, 2016.

Singhania, R. R.; Patel, A. K.; Soccol, L. R.; Pandey, A. Recent advances in solid state fermentation. Biochemical Engineering Journal, v. 44, no. 1, p. 13-18, 2009.

Sonia, K. G.; Chandha, B.; Saini, H. Sorghum straw for hyperxylanase production by Thermomyces lanuginosis (D2W3) under solid state fermentation. Bioresource Technology, v. 96, p. 1561-1569, 2005.

Subramaniyan, S.; Prema, P. Biotechnology of microbial xylanase: enzyme system: biochemistry, molecular biology and application. Critical Reviews in Biotechnology, v. 22, p. 33-64, 2002.

Ustinov, B. B.; Gusakov, A. V.; Antonov, A. I.; Sinitsyn, A. P. Comparison of properties and mode of action of six secreted xylanases from Chrysosporium lucknowense. Enzyme and Microbial Technology, v. 43, p. 56-65, 2008.

Viikari, L.; Alapuranen, M.; Puranen, T.; Vehmannpera, J.; Sinitsyn, A. P. Comparative thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering Biotechnology, v. 108, p. 121-145, 2007.

Wong, K. K. L.; Tan, L. U. L.; Saddler, J. N. Multiplicity of β-1-4-xylanase in microorganisms: function and applications. Microbiology Reviews, v. 52, p. 305-317, 1998.