Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 3, no. 6 (2016) Pereira

 

Vol. 3, No. 6, p. 263-277 - Dec. 31, 2016

 

Three-dimensional cell culture, opportunities and challenges for bioprocess engineers



Samille Henriques Pereira , Denise Soares de Moura Coutinho , Ana Flávia de Oliveira Gonçalves de Matos , Willer Ferreira da Silva Junior and Daniela Leite Fabrino

Abstract
Two-dimensional cell culture (2D) is the most used technique in studies of mass production of proteins and vaccines; however, this technique is quite limited, since cells lose their phenotypic characteristics when cultured in monolayer. As an alternative, three-dimensional cell culture (3D) allowed cells to be cultured within an environment closer to their natural one, keeping in that way, their physiologic characteristics. When grown in this kind of system, cells form structures called multicellular spheroids, which present in their cores: cellular heterogeneity, microenvironment formation, and different expositions to several factors, such as nutrients and oxygen. This technique has revolutionized researches on drug development and its mechanism of action, since the results obtained in 3D cell culture are more realistic than the ones arisen from 2D cell culture. Recently, there have been developed many 3D cell culture methodologies, however, it misses technology to scale up the biomass growth, which is a great challenge for bioprocess engineers (BE). Therefore, this review aimed to show the technical reality of 3D cell culture and how such professionals can apply their engineering and life science knowledge to improve and develop new technologies that make the use of 3D cell culture feasible and widely used by biotechnological industries.


Keywords
Cell culture; Three-dimensional; Spheroids; Bioprocess engineer.

DOI
10.21472/bjbs.030603

Full text
PDF

References
Andrei, G. Three-dimensional culture models for human viral diseases and antiviral drug development. Antiviral Research, v. 71, no. 2/3, p. 96-107, 2006. http://dx.doi.org/10.1016/j.antiviral.2006.05.023

Alvarez, M. E. B. Organização, sistemas e métodos. 5 ed. São Paulo: McGraw-Hill, 1990.

Alves, E. A.; Guimarães, A. C. R. Cultivo celular. In: Molinaro E. M. (Ed.). Conceitos e métodos para a formação de profissionais em laboratórios de saúde. Rio de Janeiro: EPSJV, 2010. p. 215-254.

Amaral, J. B.; Machado-Santelli, G. M. A cultura de células em 3 dimensões e a sua aplicação em estudos relacionados a formação do lúmen. Naturalia, v. 34, p. 1-20, 2011. Available from: <http://www.periodicos.rc.biblioteca.unesp.br/index.php/naturalia/article/view/4399/3600>. Accessed on: Aug. 17, 2016.

Amaral, J. B. Células MCF-7 como modelo 3D no estudo de câncer de mama humano. São Paulo: Universidade de São Paulo, 2010. (Thesis of doctorat).

Astashkina, A.; Grainger, D. W. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Advanced Drug Delivery Reviews, v. 69-70, p. 1-18, 2014. http://dx.doi.org/10.1016/j.addr.2014.02.008

Baradez, M.-O.; Marshall, D. The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture. Plos One, v. 6, no. 10, p. 1-12, 2011. http://dx.doi.org/10.1371/journal.pone.0026104

Barbosa, B. S.; Santo, F. A.; Pimentel, M. M. L.; Fernandes, D. P.; Prexedes, E. A.; Bezerra, M. B. Histórico do desenvolvimento do cultivo de animais. Uma revisão. Revista Brasileira de Higiene e Sanidade Animal, v. 9, no. 2, p. 334-347, 2015. http://dx.doi.org/10.5935/1981-2965.20150032

Breslin, S.; O'Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, v. 18, no. 5/6, p. 240-249, 2013. https://dx.doi.org/10.1016/j.drudis.2012.10.003

Brown, B. N.; Badilak, S. F. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Translational Research, v. 163, no. 4, p. 268-285, 2014. https://dx.doi.org/10.1016/j.trsl.2013.11.003

Burg, K. J. L.; Porter, S.; Kellam, J. F. Biomaterial developments for bone tissue engineering. Biomaterials, v. 21, no. 23, p. 2333-2492, 2000. http://dx.doi.org/10.1016/S0142-9612(00)00102-2

Byrnes, W. M. Ernest Everett Just, Johannes Holtfreter, and the origin of certain concepts in embryo morphogenesis. Mol. Reprod. Dev., v. 76, no. 10, p. 912-921, 2009. https://dx.doi.org/10.1002/mrd.21081

Carrel, A. On the permanent life of tissues outside of the organism. Journal of Experimental Medicine, v. 15, no. 5, p. 516-528, 1912. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2124948/>. Accessed on: Aug. 17, 2016.

Carvalho, A. C. A.; Pereira, E. S. C.; Costa, C.; Barreto, I. C.; Madureira, L. C.; Paim, F. R. Estratégias regenerativas da bioengenharia tecidual e aspectos éticos. Revista de Ciências Médicas e Biológicas, v. 9, no. 1, p. 20-27, 2010. Available from: <https://portalseer.ufba.br/index.php/cmbio/article/view/4728/3501>. Accessed on: Aug. 17, 2016.

Chouinard, J. A.; Gagnon, S.; Couture, M. G.; Lévesque, A.; Vermette, P. Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures. Biotechnology and Bioengineering, v. 104, no. 6, p. 1215-1223, 2009. https://dx.doi.org/10.1002/bit.22477

CREA-RN - Conselho Regional de Engenharia e Agronomia do Rio Grande do Norte. História da Engenharia. Available from: . Accessed on: Aug. 17, 2016.

Cohen, S. Social relationships and health. Am. Physicol., v. 59, no. 8, p. 679-684, 2004.

Dhaliwal, A. Three dimensional cell culture: a review. Materials and Methods, v. 2, p. 1-16, 2012.

Doran, P. M. Bioprocess engineering principles. 2. ed. London: Elsevier, 1995.

Dutta, R. C.; Dutta, A. K. Cell-interactive 3D-scaffold; advances and applications. Biotechnology Advances, v. 27, no. 4, p. 334-339, 2009. http://dx.doi.org/10.1016/j.biotechadv.2009.02.002

Elliott, N. T.; Yuan, F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. Journal of Pharmaceutical Science, v. 100, no. 1, p. 59-74, 2010. http://dx.doi.org/10.1002/jps.22257

Elsdale, T., Bard, J. Collagen substrata for studies on cell behavior. The Journal of Cell Biology, v. 54, no. 3, p. 626-637, 1972. http://dx.doi.org/10.1083/jcb.54.3.626

Fennema, E.; Rivron, N.; Rouwkema, J.; Blitterswijk, C. V.; Boer, J. Spheroid culture as a tool for creating 3D complex tissues. Trend in Biotechnology, v. 31, no. 2, p. 108-115, 2013. http://dx.doi.org/10.1016/j.tibtech.2012.12.003

Garcia-Ochoa, F.; Santos, V. E.; Gomez, E. Stirred tank bioreactors. In: Moo-Young, M. (Ed.). Comprehensive biotechnology: engineering fundamentals of biotechnology. 2. ed. London: Elsevier, 2011. v. 2. p. 179-198.

GE Healthcare Life Science. Bioprocessing Bioreactors. Available from: <http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/en/GELifeSciences-br/products/AlternativeProductStructure_24445/>. Accessed on: Jul. 05, 2016.

Goepfert, C.; Scheurer, W.; Rohn, S.; Rathjen, B.; Meyer, S.; Dittmann, A.; Wiegandt, K.; Janben, R.; Pörtne, R. 3D-bioreactor culture of human hepatoma cell line HepG2 as a promising tool for in vitro substance testing. BMC Proceedings, v. 5, no. 8, p. 15-18, 2011. http://dx.doi.org/10.1186/1753-6561-5-S8-P61

Haycock, J. W. (Ed.). 3D cell culture: methods and protocols. 1. ed. Sheffield: Humana Press, 2011. v. 695. (Methods in Molecular Biology). http://dx.doi.org/10.1007/978-1-60761-984-0

Hsiao, A. Y.; Tung, Y. C.; Qu, X.; Patel, L. R.; Pienta, K. J.; Takayama, S. 384 hanging drop arrays give excellent z-factors and allow versatile formation of co-culture spheroid. Biotechnology and Bioenginnering, v. 109, no. 5, p. 1293-1304, 2012. http://dx.doi.org/10.1002/bit.24399

Ivascu, A.; Kubbies, M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen., v. 11, no. 8, p. 922-932, 2006. http://dx.doi.org/10.1177/1087057106292763

Santos Junior, A. R.; Wada, M. L. F. Polímeros biorreabsorvíveis como substrato para cultura de células tecidual. Polímeros: Ciência e Tecnologia, v. 17, no. 4, p. 308-317, 2007. http://dx.doi.org/10.1590/S0104-14282007000400010

Justice, B. A.; Bard, N. A; Felder, R. A. 3D cell culture opens new dimensions in cell-based assays. Drug Discovery Today, v. 14, no. 1/2, p. 102-107, 2009. http://dx.doi.org/10.1016/j.drudis.2008.11.006

Kelm, J. M.; Timmins, N. E.; Brown, C. J.; Fussenegger, M.; Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, v. 83, no. 2, p. 73-180. 2003. http://dx.doi.org/10.1002/bit.10655

Kumar, A. Starly, B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication, v. 7, p. 1-14, 2015.

Kurosawa, H. Methods for inducing embryoid body formation: in vitro differentiation of embryonic stem cells. Journal of Bioscience and Bioengineering, v. 103, no. 5, p. 389-398, 2007. http://dx.doi.org/10.1263/jbb.103.389

Kuystermans, D.; Al-Rubeai, M. Bioreactor systems for producing antibody from mammalian cells. In: Al-Rubeai, M. (Ed.). Antibody expression and production, cell engineering 7. Dublin: Springer, 2011.

Lee, J.; Cuddihy, M. J.; Kotov, N. A. Three-dimensional cell culture matrices: state of the art. Tissue Engineering: Part B, v. 14, no. 1, p. 61-87, 2008. http://dx.doi.org/10.1089/teb.2007.0150

Li, X. J.; Valadez, A. V.; Zuo, P.; Nie, Z. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis, v. 4, no. 12, p. 1509-1525, 2012. https://dx.doi.org/10.4155/bio.12.133

Lin, R. Z.; Chang, H. Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, v. 3, no. 9/10, p. 1172-1784, 2008. http://dx.doi.org/10.1002/biot.200700228

Lowe, S. B.; Tan, V. T. G.; Soeriyadi, A. H.; Davis, T. P.; Gooding, J. J. Synthesis and high-throughput processing of polymeric hydrogels for 3D cell culture. Bioconjugate Chemistry, v. 25, no. 9, p. 1581-1601, 2014. http://dx.doi.org/10.1021/bc500310v

Luisi, S. B.; Barbachan, J. J. D.; Chies, J. A. B.; Sant'Ana Filho, M. A cultura de células como ferramenta para estudos do comportamento pulpar. Revista da Faculdade de Odontologia, v. 45, no. 1, p. 3-8, 2004. Available from: <http://seer.ufrgs.br/index.php/RevistadaFaculdadeOdontologia/article/view/7676/9780>. Accessed on: Jul. 05, 2016.

Magrofuoco, E.; Elvassore, N. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture. Biotechnol. Prog., v. 28, no. 3, p. 833-845, 2012. http://dx.doi.org/10.1002/btpr.1539

Maltman, D. J.; Przyborski, S. A. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochemical Society Transactions, v. 38, no. 4, p. 1072-1075, 2010. http://dx.doi.org/10.1042/BST0381072

Martin, Y.; Vermette, P. Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials, v. 26, no. 35, p. 7481-7503, 2005. http://dx.doi.org/10.1016/j.biomaterials.2005.05.057

Moraes, A. M.; Augusto, E. F. P.; Castilho, L. R. Tecnologia do cultivo de células animais: de biofármacos a terapia gênica. 1. ed. São Paulo: Roca, 2007.

Pampaloni, F.; Reynaud, E. G.; Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews, v. 8, p. 839-845, 2007. http://dx.doi.org/10.1038/nrm2236

Ravi, M.; Paramesh, V.; Kaviya, S. R.; Anuradha, E.; Solomon, F. D. P. 3D Cell Culture Systems: advantages and applications. Journal of Cellular Physiology, v. 230, p. 16-26, 2015. http://dx.doi.org/10.1002/jcp.24683

Rozario, T.; DeSimone, D. W. The extracelular matrix in development and morphogenesis: a dynamic view. Developmental Biology, v. 341, no. 1, p. 126-140, 2010. http://dx.doi.org/10.1016/j.ydbio.2009.10.026

Sailon, A. M.; Allori, A. C.; Davidson, E. H.; Reformat, D. D.; Allen Jr., R. J.; Warren, S. M. A novel flow-perfusion bioreactor supports 3D dynamic cell culture. Journal of Biomedicine and Biotechnology, v. 2009, Article ID 873816, 7 p., 2009. http://dx.doi.org/10.1155/2009/873816

Schaeffer, I. W. In memorium: A tribute to Dr. Joseph Leighton. Methods in Cell Science, v. 21, no. 1, p. 1-4, 1999. http://dx.doi.org/10.1023/A:1009731524406

Schimidell, W.; Lima, U. A.; Aquarone, E.; Borzani, W. Biotecnologia Industrial: Engenharia Bioquímica. 1. ed. São Paulo: Edgard Blücher, 2001.

Sodunke, T. R.; Turner, K. K, Caldwell, S. A.; McBride, K. W.; Reginato, M. J.; Noh, H. M. Micropatterns of matrigel for three-dimensional epithelial cultures. Biomaterials, v. 28, no. 27, p. 4006-4016, 2007. http://dx.doi.org/10.1016/j.biomaterials.2007.05.021

Souza, W. F. Perda de adesão célula-célula mediada pela e-caderina em câncer colo-retal: vias de sinalização envolvidas. Rio de Janeiro: Instituto Nacional do Câncer, 2009. (Undergraduate dissertation).

Tavares, V. A. C. D. B. Matrizes de policaprolactona e quitosano para aplicação em engenharia de tecidos. Lisboa: Universidade Nova de Lisboa, 2011. (Undergraduate dissertation).

Tung, Y. C.; Hsiao, A. Y.; Allen, S. G.; Torisawa, Y.; Ho, M.; Takayama, S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst., v. 136, no. 3, p. 473-478, 2011. http://dx.doi.org/10.1039/c0an00609b

Vinci, M.; Gowan, S.; Boxall, F.; Patterson, L.; Zimmermann, M.; Court, W.; Lomas, C.; Mendiola, M.; Hardisson, D.; Eccles, S. Advances in establishment and analysis of three dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10:29, 20 p., 2012. http://dx.doi.org/10.1186/1741-7007-10-29

Weaver, V. M.; Petersen, O. W.; Wang, F.; Larabell, C. A.; Briand, P.; Damsky, C.; Bissell, M. J. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. The Journal of Cell Biology, v. 137, no. 1, p. 231-245, 1997. http://dx.doi.org/10.1083/jcb.137.1.231

Wendt, D.; Riboldi, S. A.; Cioffi, M.; Martin, I. Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Advanced Materials, v. 21, p. 3352-3367, 2009. http://dx.doi.org/10.1002/adma.200802748

Weyand, B.; Israelowitz, M.; Schroeder, H. P.; Vogt, P. M. Fluid dynamics in bioreactor design: considerations for the theoretical and practical approach. In: Kasper, C.; van Griensven, M.; Pörtner, R. (Eds.). Bioreactor Systems for Tissue Engineering. Heidelberg: Springer, 2009. http://dx.doi.org/10.1007/10_2008_13

Williams, J. A. Keys to bioreactor selection. CEP Magazine, p. 34-41, March 2002.

Winkenwerder, J. J.; Palechek, P. L.; Reece, J. S.; Saarinen, M. A.; Arnold, M. A.; Cohen, M. B.; Murhammer, D. W. Evaluating prostate cancer cell culturing methods: a comparison of cell morphologies and metabolic activity. Oncol. Rep., v. 10, no. 4, p. 783-789, 2003. http://dx.doi.org/10.3892/or.10.4.783