Brazilian Journal of Biological Sciences (ISSN 2358-2731)

Home Archive v. 3, no. 5 (2016) Al-Jammas


Vol. 3, No. 5, p. 193-200 - Jun. 30, 2016


Study the influence of nitrogen on rennin production by fungi Rhizomucor miehei using solid-state fermentation

Houthail Al-Ahmad Al-Jammas , Hassan Al-Fathi , Walid Al-Khalaf and Anton Taifor

The effect of different nitrogen resources on the biosynthesis of milk clotting enzyme by Rhizmucor miehei was studied under solid state fermentation using wheat bran as base medium. Urea, peptone, albumin, casein, yeast extract were added with different concentrations (1%-10%). The response parameters were the ratio of milk clotting activity (MC) to proteolytic activity (PA) and protein content. The highest enzyme yield was achieved with casein at a rate of 2% w/w followed by 2% yeast extract, 1% albumin, 1% peptone, and 1% urea with values 5.6, 4.9, 4.2, 4, 3 mg/mL, respectively. Maximum enzyme activity (MCA/PA) was 50.4, 44.1, 37.8, 36, 27 SU for casein, yeast extract, albumin, peptone, and urea, respectively.

Rennin; Protease; Rhizomucor miehei; Solid state fermentation; Nitrogen.


Full text

Al-Khafaji, Z. Biotechnology. Baghdad, Iraq: Institute of Genetic Engineering and Biotechnology, University of Baghdad, 1990.

Arima, K.; Yu, J.; Iwasaki, S. Milk-clotting enzyme from Mucor pussilus var. Lindt. Methods in Enzymology, v. 19, p. 446-460, 1970.

Berger, H.; Basheer, A.; Bock, S.; Reyes-Dominguez, Y.; Dalik, T.; Altmann, F.; Strauss, J. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol. Microbiol., v. 69, no. 6, p. 1385-1398, 2008.

Bouchara, J.-P.; Larcher, G.; Joubaud, F.; Penn, P.; Tronchin, G.; Chabasse, D. Extracellular fibrinogenolytic enzyme of Aspergillus fumigatus: substrate-dependent variations in the proteinase synthesis and characterization of the enzyme. FEMS Immunol. Med. Microbiol., v. 7, no. 1, p. 81-91, 1993.

Corbett, K. Preparation, sterilization and design of media. British Mycological Symposium Series, v. 3, p. 25-41, 1980.

Foda, M.; Moharam, M. E.; Ramadan, A.; El-Bendary, M. A. Over production of milk clotting enzyme from Rhizomucor miehei through adjustment of growth under solid state fermentation conditions. Australian Journal of Basic and Applied Science, v. 6, no. 8, p. 579-589, 2012. Available from: <>. Accessed in: Feb. 24, 2016.

Gais, S.; Fazouane, F.; Mechakra, A. Production of milk clotting protease by Rhizopus stolonifer through optimization of culture conditions. World Academy of Science and Technology, v. 30, p. 1444-1448, 2009. Available from: <>. Accessed in: Feb. 24, 2016.

Ire, F. S.; Okolo, B. N.; Moneke, A. A.; Odibo, F. J. C. Purification and characterisation of an acid protease from Aspergillus carbonarius. African Journal of Food Science, v. 5, no. 12, p. 695-709, 2011. Available from: <>. Accessed in: Feb. 24, 2016.

Kazemi-Vaysari, A.; Kheirolomoom, A.; Arjmand, M.; Habibollahi, M. Optimization of Mucor miehei rennin production and recovery. Scientia Iranica, v. 9, no. 1, p. 99-104, 2002. Available from: <>. Accessed in: Feb. 24, 2016.

Khademi, F.; Abachi, S.; Mortazavi, A.; Ehsani, M. A.; Tabatabaei, M. R.; Malekzadeh, F. A. Optimization of fungal rennet production by local isolate of Rhizomucor miehei under solid substrate fermentation system. IOSR Journal of Pharmacy and Biological Science, v. 5, no. 2, p. 115-121, 2013.

Krishna, C. Solid-state fermentation systems: an overview. Crit. Rev. Biotechnol., v. 25, p. 1-30, 2005.

Kunitz, M. Crystalline soybean trypsin inhibitor: II. general properties. J. Gen. Physiol., v. 30, no. 4, p. 291-310, 1947. Available from: <>. Accessed in: Feb. 24, 2016.

Kurbanoğlu, E. B.; Algur, Ö. F. Use of ram horn hydrolyste as a peptone for bacterial growth. Turk. J. Biol., v. 26, no. 2, p. 115-123, 2002. Available from: <>. Accessed in: Feb. 24, 2016.

Larcher, G.; Cimon, B.; Symoens, F.; Tronchin, G.; Chabasse, D.; Bouchara, J.-P. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem. J., no. 315, p. 119 126, 1996. Available from: <>. Accessed in: Feb. 24, 2016.

Lima, C. J. B.; Cortezi, M.; Lovaglio, R. B.; Ribeiro, E. J.; Contiero, J.; Araújo, E. H. Production of rennet in submerged fermentation with the filamentous fungus Mucor miehei NRRL 3420. World Applied Science Journal, v. 4, no. 4, p. 578-585, 2008.

Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the folin phenol reagent. J. Biol. Chem., no. 193, p. 265-275, 1951. Available from: <>. Accessed in: Feb. 24, 2016.

Marzluf, G. Genetic regulation of nitrogen metabolisim in the fungi. Microbiol. Mol. Biol. Rev., v. 61, no. 1, p. 17-32, 1997. Available from: <>. Accessed in: Feb. 24, 2016.

Neelakantan, S.; Mohanty, A. K.; Kaushik J. K. Production and use of microbial enzymes for dairy processing. Current Science, v. 77, p. 143-148, 1999. Available from: <>. Accessed in: Feb. 24, 2016.

Nigam, P.; Singh, D. Solid-state (substrate) fermentation system and their applications in biotechnology. J. Basic Microbiol., v. 34, no. 6, p. 405-423, 1994.

Nouani, A.; Moulti-Mati, F.; Belbraouet, S.; Bellal, M. M. Purification and characterization of a milk-clotting protease from Mucor pusillus: method comparison. African Journal of Biotechnology, v. 10, no. 9, p. 1655-1665, 2011. Available from: <>. Accessed in: Feb. 24, 2016.

Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv., v. 22, no. 3, p. 189-259, 2004.

Pérez-Guerra, N.; Torrado-Agrasar, A.; López-Macias, C.; Pastrana, L. Main characteristics and applications of solid substrate fermentation. Electron. J. Environ. Agric. Food Chem., v. 2, p. 343-350, 2003.

Rao, M. B.; Tanksale, A. M.; Ghatge, M. S.; Deshpande, V. V. Molecular and biotechnological, aspects of microbial proteases. Microbiol. Mol. Biol. Rev., v. 62, no. 3, p. 597-635, 1998. Available from: <>. Accessed in: Feb. 24, 2016.

Schindler, J.; Lehmann, R.; Pfeiffer, H.; Schmid, R. Extracellular acid protease of Rhizopus rhizopodiformis. In: Lafferty, R. M.; Maier, E.; Melsungen, B. B.; Melsungen, A. G. (Ed.). Enzyme Technology: III. Rotenburg Fermentation Symposium, 1982 SchloBhotel "Wtlhelmshohe" Kassel 22nd-24th September 1982. Berlin: Springer-Verlag, 1983. p. 69-77.

Silveira, G. G.; Oliveira, G. M.; Ribeiro, E. J.; Monti, R.; Contiero, J. Microbial rennet produced by Mucor miehei in solid-state and submerged fermentation. Brazilian Archives of Biotechnology, v. 48, no. 6, p. 931-937, 2005.

Singhania, R. R.; Pate, A.; Pandey A. The industrial production of enzymes. In: Soetaert, W.; Vandamme, E. J. (Ed.). Industrial biotechnology: sustainable growth and economic success. Weinheim: Wiley-VCH Verlag, 2010. p. 217-226.

Subramaniyam, R.; Vimala, R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Science Nature, v. 3, no. 3, p. 480-486, 2012. Available from: <>. Accessed in: Feb. 24, 2016.

Sumantha, A.; Larroche, C.; Pandey, A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol. Biotechnol., v. 44, no. 2, p. 211-220, 2006. Available from: <>. Accessed in: Feb. 24, 2016.

Thakur, M. S.; Karanth, N. G.; Nand, K. Production of fungal rennet by Mucor miehei. Appl. Microbial. Biotechnol., v. 32, no. 4, p. 409-413, 1990.

Tiwari, B. D. Microbial protein and its application in cheese making. In: Indian Council of Agricultural Research. (Ed.). Application of biotechnology in dairy and food processing. Karnal: Indian Council of Agricultural Research, 2003. p. 179-183. Available from: <>. Accessed in: Feb. 24, 2016.

USDA - United State Department of Agriculture National. Agricultural Research Service. Nutrient database for standard reference. 2015. (Release 28). Available from: <>. Accessed in: Feb. 24, 2016.