Vol. 3, No. 5, p. 193-200 - Jun. 30, 2016
Study the influence of nitrogen on rennin production by fungi Rhizomucor miehei using solid-state fermentation
Houthail Al-Ahmad Al-Jammas




Abstract
The effect of different nitrogen resources on the biosynthesis of milk clotting enzyme by Rhizmucor miehei was studied under solid state fermentation using wheat bran as base medium. Urea, peptone, albumin, casein, yeast extract were added with different concentrations (1%-10%). The response parameters were the ratio of milk clotting activity (MC) to proteolytic activity (PA) and protein content. The highest enzyme yield was achieved with casein at a rate of 2% w/w followed by 2% yeast extract, 1% albumin, 1% peptone, and 1% urea with values 5.6, 4.9, 4.2, 4, 3 mg/mL, respectively. Maximum enzyme activity (MCA/PA) was 50.4, 44.1, 37.8, 36, 27 SU for casein, yeast extract, albumin, peptone, and urea, respectively.
Keywords
Rennin; Protease; Rhizomucor miehei; Solid state fermentation; Nitrogen.
DOI
10.21472/bjbs.030517
Full text
PDF
References
Al-Khafaji, Z. Biotechnology. Baghdad, Iraq: Institute of Genetic Engineering and Biotechnology,
University of Baghdad, 1990.
Arima, K.; Yu, J.; Iwasaki, S. Milk-clotting enzyme from Mucor pussilus var. Lindt. Methods
in Enzymology, v. 19, p. 446-460, 1970.
Berger, H.; Basheer, A.; Bock, S.; Reyes-Dominguez, Y.; Dalik, T.; Altmann, F.; Strauss, J. Dissecting
individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate
cluster. Mol. Microbiol., v. 69, no. 6, p. 1385-1398, 2008. http://dx.doi.org/10.1111/j.1365-2958.2008.06359.x
Bouchara, J.-P.; Larcher, G.; Joubaud, F.; Penn, P.; Tronchin, G.; Chabasse, D. Extracellular fibrinogenolytic
enzyme of Aspergillus fumigatus: substrate-dependent variations in the proteinase synthesis and
characterization of the enzyme. FEMS Immunol. Med. Microbiol., v. 7, no. 1, p. 81-91, 1993.
http://dx.doi.org/10.1111/j.1574-695X.1993.tb00385.x
Corbett, K. Preparation, sterilization and design of media. British Mycological Symposium Series,
v. 3, p. 25-41, 1980.
Foda, M.; Moharam, M. E.; Ramadan, A.; El-Bendary, M. A. Over production of milk clotting enzyme from
Rhizomucor miehei through adjustment of growth under solid state fermentation conditions.
Australian Journal of Basic and Applied Science, v. 6, no. 8, p. 579-589, 2012. Available from:
<http://ajbasweb.com/old/ajbas/2012/August/579-589.pdf>.
Accessed in: Feb. 24, 2016.
Gais, S.; Fazouane, F.; Mechakra, A. Production of milk clotting protease by Rhizopus stolonifer
through optimization of culture conditions. World Academy of Science and Technology, v. 30,
p. 1444-1448, 2009. Available from: <http://waset.org/publications/15170/production-of-milk-clotting-protease-by-rhizopus-stolonifer-through-optimization-of-culture-conditions>.
Accessed in: Feb. 24, 2016.
Ire, F. S.; Okolo, B. N.; Moneke, A. A.; Odibo, F. J. C. Purification and characterisation of an acid
protease from Aspergillus carbonarius. African Journal of Food Science, v. 5, no. 12,
p. 695-709, 2011. Available from: <http://www.academicjournals.org/journal/AJFS/article-full-text-pdf/B8EE9EE10369>.
Accessed in: Feb. 24, 2016.
Kazemi-Vaysari, A.; Kheirolomoom, A.; Arjmand, M.; Habibollahi, M. Optimization of Mucor miehei
rennin production and recovery. Scientia Iranica, v. 9, no. 1, p. 99-104, 2002. Available from:
<http://archive.scientiairanica.com/PDF/Articles/00000367/SI090114.pdf>.
Accessed in: Feb. 24, 2016.
Khademi, F.; Abachi, S.; Mortazavi, A.; Ehsani, M. A.; Tabatabaei, M. R.; Malekzadeh, F. A. Optimization
of fungal rennet production by local isolate of Rhizomucor miehei under solid substrate fermentation
system. IOSR Journal of Pharmacy and Biological Science, v. 5, no. 2, p. 115-121, 2013.
Krishna, C. Solid-state fermentation systems: an overview. Crit. Rev. Biotechnol., v. 25, p. 1-30,
2005. http://dx.doi.org/10.1080/07388550590925383
Kunitz, M. Crystalline soybean trypsin inhibitor: II. general properties. J. Gen. Physiol., v. 30,
no. 4, p. 291-310, 1947. Available from: <http://jgp.rupress.org/content/30/4/291.long>.
Accessed in: Feb. 24, 2016.
Kurbanoğlu, E. B.; Algur, Ö. F. Use of ram horn hydrolyste as a peptone for bacterial growth. Turk.
J. Biol., v. 26, no. 2, p. 115-123, 2002. Available from: <http://dergipark.ulakbim.gov.tr/tbtkbiology/article/download/5000021818/5000022059>.
Accessed in: Feb. 24, 2016.
Larcher, G.; Cimon, B.; Symoens, F.; Tronchin, G.; Chabasse, D.; Bouchara, J.-P. A 33 kDa serine proteinase from
Scedosporium apiospermum. Biochem. J., no. 315, p. 119 126, 1996. Available from:
<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1217159/pdf/8670095.pdf>.
Accessed in: Feb. 24, 2016.
Lima, C. J. B.; Cortezi, M.; Lovaglio, R. B.; Ribeiro, E. J.; Contiero, J.; Araújo, E. H. Production of rennet
in submerged fermentation with the filamentous fungus Mucor miehei NRRL 3420. World Applied Science Journal,
v. 4, no. 4, p. 578-585, 2008.
Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the folin phenol reagent. J. Biol. Chem.,
no. 193, p. 265-275, 1951. Available from: <http://www.jbc.org/content/193/1/265.long>.
Accessed in: Feb. 24, 2016.
Marzluf, G. Genetic regulation of nitrogen metabolisim in the fungi. Microbiol. Mol. Biol. Rev., v. 61, no. 1,
p. 17-32, 1997. Available from: <http://mmbr.asm.org/content/61/1/17.long>.
Accessed in: Feb. 24, 2016.
Neelakantan, S.; Mohanty, A. K.; Kaushik J. K. Production and use of microbial enzymes for dairy processing. Current
Science, v. 77, p. 143-148, 1999. Available from: <http://www.iisc.ernet.in/currsci/jul10/articles22.htm>.
Accessed in: Feb. 24, 2016.
Nigam, P.; Singh, D. Solid-state (substrate) fermentation system and their applications in biotechnology. J. Basic
Microbiol., v. 34, no. 6, p. 405-423, 1994. http://dx.doi.org/10.1002/jobm.3620340607
Nouani, A.; Moulti-Mati, F.; Belbraouet, S.; Bellal, M. M. Purification and characterization of a milk-clotting protease
from Mucor pusillus: method comparison. African Journal of Biotechnology, v. 10, no. 9, p. 1655-1665, 2011.
Available from: <http://www.ajol.info/index.php/ajb/article/download/92976/82388>.
Accessed in: Feb. 24, 2016.
Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv., v. 22,
no. 3, p. 189-259, 2004. http://dx.doi.org/10.1016/j.biotechadv.2003.09.005
Pérez-Guerra, N.; Torrado-Agrasar, A.; López-Macias, C.; Pastrana, L. Main characteristics and applications of
solid substrate fermentation. Electron. J. Environ. Agric. Food Chem., v. 2, p. 343-350, 2003.
Rao, M. B.; Tanksale, A. M.; Ghatge, M. S.; Deshpande, V. V. Molecular and biotechnological, aspects of microbial proteases.
Microbiol. Mol. Biol. Rev., v. 62, no. 3, p. 597-635, 1998. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC98927/pdf/mr000597.pdf>.
Accessed in: Feb. 24, 2016.
Schindler, J.; Lehmann, R.; Pfeiffer, H.; Schmid, R. Extracellular acid protease of Rhizopus rhizopodiformis. In: Lafferty,
R. M.; Maier, E.; Melsungen, B. B.; Melsungen, A. G. (Ed.). Enzyme Technology: III. Rotenburg Fermentation Symposium,
1982 SchloBhotel "Wtlhelmshohe" Kassel 22nd-24th September 1982. Berlin: Springer-Verlag, 1983. p. 69-77. http://dx.doi.org/10.1007/978-3-642-69148-5_8
Silveira, G. G.; Oliveira, G. M.; Ribeiro, E. J.; Monti, R.; Contiero, J. Microbial rennet produced by Mucor miehei
in solid-state and submerged fermentation. Brazilian Archives of Biotechnology, v. 48, no. 6, p. 931-937, 2005.
http://dx.doi.org/10.1590/S1516-89132005000800009
Singhania, R. R.; Pate, A.; Pandey A. The industrial production of enzymes. In: Soetaert, W.; Vandamme, E. J. (Ed.). Industrial
biotechnology: sustainable growth and economic success. Weinheim: Wiley-VCH Verlag, 2010. p. 217-226. http://dx.doi.org/10.1002/9783527630233.ch5
Subramaniyam, R.; Vimala, R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study.
International Journal of Science Nature, v. 3, no. 3, p. 480-486, 2012. Available from: <http://www.scienceandnature.org/IJSN_Vol3(3)S2012/IJSN-VOL3(3)12-1R.pdf>.
Accessed in: Feb. 24, 2016.
Sumantha, A.; Larroche, C.; Pandey, A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food
Technol. Biotechnol., v. 44, no. 2, p. 211-220, 2006. Available from: <http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-211.pdf>.
Accessed in: Feb. 24, 2016.
Thakur, M. S.; Karanth, N. G.; Nand, K. Production of fungal rennet by Mucor miehei. Appl. Microbial. Biotechnol.,
v. 32, no. 4, p. 409-413, 1990. http://dx.doi.org/10.1007/BF00903774
Tiwari, B. D. Microbial protein and its application in cheese making. In: Indian Council of Agricultural Research. (Ed.). Application
of biotechnology in dairy and food processing. Karnal: Indian Council of Agricultural Research, 2003. p. 179-183. Available from:
<http://www.docfoc.com/application-of-biotechnology-in-dairy-and-food-processing-2003>.
Accessed in: Feb. 24, 2016.
USDA - United State Department of Agriculture National. Agricultural Research Service. Nutrient database for standard reference. 2015.
(Release 28). Available from: <http://www.ars.usda.gov/Services/docs.htm?docid=8964>.
Accessed in: Feb. 24, 2016.