Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 3, no. 5 (2016) Rasool

 

Vol. 3, No. 5, p. 3-21 - Jun. 30, 2016

 

A review on bioenergy and biofuels: sources and their production



Ubaid Rasool and S. Hemalatha

Abstract
Bioenergy refers to renewable energy produced from biomass. Biomass is any organic material which has stored sunlight in the form of chemical energy. Depleting fossil fuel reserves and growing demand for energy has necessitated the renewed search for alternative energy resources such as plants. Biofuels are an alternative to fossil fuels, which are liquid or gaseous fuels that are derived from biomass sources. Biofuels can be used alone or in combination with other fossil fuels such as petrol. Biofuels are classified into first, second and third generation biofuels. In this review paper, emphasis on the production of biodiesel and bioethanol and how to modify the methods that involve their formation has been carried out. Biodiesel and bioethanol come under first generation biofuels. The first generation biofuels are produced from starch and sugars (bioethanol) and from seed oils (biodiesel). The direct use of vegetable oils and non-edible oils can prove harmful for the diesel engines due to their high viscosity, high density and various other problems that are related to them. So there is a need of converting these sources into biodiesel so that it can be used as a replacement for petroleum based diesel. Another important biofuel, referred to as bioethanol has gained a lot of importance. This review article deals with the conversion of non-edible oils to biodiesel or by modifying the process of transesterification as well as the conversion of sugars to bioethanol by genetic modification of yeast cells and by changing the substrates required for ethanol production by yeast.


Keywords
Bioenergy; Biofuels; Biodiesel; Bioethanol; Transesterification; Fermentation.

DOI
10.21472/bjbs.030501

Full text
PDF

References
Ahmad, M.; Khan, M. A.; Zafar, M.; Sultana, S. Biodiesel from non-edible oil seeds: a renewable source of bioenergy. In: Bernardes, M. A. S. (Ed.). Economic effects of biofuel production. Rijeka, Croatia: InTech, 2011. Available from: <http://cdn.intechopen.com/pdfs-wm/17887.pdf>. Accessed in: Feb. 18, 2016.

Ahmad, M.; Teong, L. K.; Sultana, S.; Zafar, M. Biodiesel production from non-food crops: a step towards self reliance in energy. In: Vilas, A. M. (Ed.). Materials and processes for energy: communicating current research and technological developments. Badajoz, Spain: Formatex Research Center, 2013. p. 239-243. Available from: <http://www.formatex.info/energymaterialsbook/book/239-243.pdf>. Accessed in: Feb. 18, 2016.

Akbar, E.; Yaakob, Z.; Kamarudin, S. K.; Ismail, M.; Salimon. J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. European Journal of Scientific Research, v. 29, no. 3, p. 396, 2009. Available from: <http://www.doc-developpement-durable.org/file/Huiles-vegetales-noix/Fiches_plantes/jatropha/Characteristic and Composition of Jatropha Curcas Oil Seed_Malaysia.pdf>. Accessed in: Feb. 18, 2016.

ASTM D6751-15ce1. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. West Conshohocken, PA: ASTM International, 2008. (Report no. D6751-08).

Atabani, A. E.; Silitonga, A. S.; Badruddin. I. A.; Mahlia, T. M. I.; Masjuki, H. H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, v. 16, no. 4, p. 2070-2093, 2012.

Ayas, N.; Danisman, A. Alkali catalyzed transesterification of cotton seed oil by microwave irradiation. Fuel, v. 86, no. 17/18, p. 2639-2644, 2007.

Babu, V.; Thapliyal, A.; Patel, G. K. Biofuels production. Hoboken, New Jersey: John Wiley & Sons, 2013.

Baucher, M.; Halpin, C.; Petit-Conil, M.; Boerjan, W. Lignin: genetic engineering and impact on pulping. Crit. Rev. Biochem. Mol. Biol., v. 38, no. 4, p. 305-350, 2003. Available from: <http://www.biotecnologie.univaq.it/getres.php?resid=467>. Accessed in: Feb. 18, 2016.

Bobade, S. N.; Khyade, V. B. Preparation of methyl ester (biodiesel) from karanja (Pongamia pinnata) oil. Research Journal of Chemical Sciences, v. 2, no. 8, p. 43-50, 2012. Available from: <http://www.isca.in/rjcs/Archives/vol2/i8/8.ISCA-RJCS-2012-106.pdf>. Accessed in: Feb. 18, 2016.

Bosch, M.; Hazen, P. Lignocellulosic feedstocks: research progress and challenges in optimizing biomass quality and yield. Front Plant Sci., v. 4, article 474, 2013. http://dx.doi.org/10.3389/fpls.2013.00474

Canakci, M.; Van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers, v. 44, no. 6, p. 1429-1436, 1999. Available from: <https://seniordesign.engr.uidaho.edu/2007_ 2008/frenchfryfuel/paper_2.pdf>. Accessed in: Feb. 18, 2016.

Chand, P. Enhancing biodiesel production from soybean oil using ultrasonics. Ames, Iowa: Iowa State University, 2008. (Graduate dissertation). Available from: <http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2110&context=etd>. Accessed in: Feb. 18, 2016.

Chum, H.; Faaij, A. P. C.; Moreira, J.; Edenhofer, O. Renewable energy sources and climate change mitigation. In: Girardin, L. O.; Roman, M. Special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2012. p. 209-331. Available from: <http://rael.berkeley.edu/old_drupal/sites/default/files/IPCC 2011-Special Report on Renewable Energy Sources and Climate Change Mitigation.pdf>. Accessed in: Feb. 18, 2016.

Cushion, E.; Whiteman, A.; Dieterle, G. Bioenergy development: issues and impacts for poverty and natural resource management. Washington, DC: The Word Bank, 2009. p. 157-161. Available from: <http://siteresources.worldbank.org/INTARD/Resources/Bioenergy.pdf>. Accessed in: Feb. 18, 2016.

Demirbaș, A. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, v. 43, no. 17, p. 2349-2356, 2002. http://dx.doi.org/10.1016/S0196-8904(01)00170-4

Demirbaș, A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management, v. 44, no. 13, p. 2093-2109, 2003. http://dx.doi.org/10.1016/S0196-8904(02)00234-0

Demirbaș, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, v. 31, p. 466-487, 2005. Available from: <http://nopr.niscair.res.in/bitstream/123456789/5379/1/JSIR 64(11) 858-865.pdf>. Accessed in: Feb. 18, 2016.

Demirbaș, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, v. 49, p. 2106-2116, 2008. http://dx.doi.org/10.1016/j.enconman.2008.02.020

Deng, L.; Xu, X.; Haraldsson, G. G.; Tan, T.; Wang F. Enzymatic production of alkyl esters through alcoholysis: a critical evaluation of lipases and alcohols. J. Am. Oil Chem. Soc., v. 82, no. 5, p. 341-347, 2005.

Dossat, V.; Combes, D.; Marty, A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb. Tech., v. 25, p. 194-200, 1999.

Edenhofer, O.; Madruga, R. P.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; Stechow, C. Renewable energy sources and climate change mitigation: special report of the Intergovernmental Panel on Climate Change. Available from: <http://srren.ipcc-wg3.de/report/IPCC_SRREN _Full_Report.pdf>. Accessed in: Feb. 18, 2016.

El Sherbiny, S. A.; Refaat, A. A.; El Sheltawy, S. T. Production of biodiesel using the microwave technique. Journal of Advanced Research, v. 1, no. 4, p. 309-314, 2010. http://dx.doi.org/10.1016/j.jare.2010.07.003

Elbehri, A.; Segerstedt, A.; Liu, P. Biofuels and the sustainability challenge: a global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Rome: FAO, 2013. Available from: <http://www.fao.org/docrep/017/i3126e/i3126e.pdf>. Accessed in: Feb. 18, 2016.

Fissore, E. N.; Ponce, N. M. A.; Matkovic, L.; Stortz, C. A.; Rojas, A. M.; Gerschenson, L. N. Isolation of pectin-enriched products from red beet (Beta vulgaris L. var. conditiva) wastes: composition and functional properties. Food Sci. Technol. Int., v. 17, p. 517-527, 2011.

Freedman, B.; Pryde, E. H.; Mounts, T. L. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of Oil & Fat Industries, v. 61, no. 10, p. 1638-1643, 1984. http://dx.doi.org/10.1007/BF02541649

Goldschmidt, F. From cellulose to ethanol: engineering microorganisms to produce biofuel. Zürich: Institute of Biogeochemistry and Pollutant Dynamics, 2008.

Graboski, M. S.; McCormick, R. L. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science, v. 24, no. 2, p. 125-164, 1998.

Gude, V. G.; Patil, P.; Martinez-Guerra, E.; Deng, S.; Nirmalakhandan, N. Microwave energy potential for biodiesel production. Sustainable Chemical Processes, v. 1, article 5, 2013. http://dx.doi.org/10.1186/2043-7129-1-5

Gulalkayi, V. S.; Unakal, C. G.; Kaliwa, B. B. Biotechnological production of ethanol by Saccharomyces cerevisiae, using different substrates. Journal of Pharmaceutical and Scientific Innovation, v. 1 no. 6, p. 13-17, 2012. Available from: <http://jpsionline.com/admin/php/uploads/147_pdf.pdf>. Accessed in: Feb. 18, 2016.

Hamelinck, C. N.; Hooijdonk, G. V.; Faaij, A. P. C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, v. 28, no. 4, p. 384-410, 2005.

Helwani, Z.; Othman, M. R.; Aziz, N.; Kimc, J.; Fernando, W. J. N. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl. Catal. A: Gen., v. 363, no. 1/2, p. 1-10, 2009.

Hsu, A. F.; Jones, K. C.; Fogila, T. A.; Marner, W. N. Continuous production of ethyl esters of grease using an immobilized lipase. J. Am. Oil Chem. Soc., v. 81, p. 749-752, 2004. Available from: <http://naldc.nal.usda.gov/download/13885/PDF>. Accessed in: Feb. 18, 2016.

Htet, M. Z.; Ling, L. Y.; Yun, S. H.; Rajee, O. Biofuel from microalgae: a review on the current status and future trends. International Journal of Advanced Biotechnology and Research, v. 4, no. 3, p. 329-341, 2013. Available from: <http://bipublication.com/files/IJABR-V4I3-2013-08.pdf>. Accessed in: Feb. 18, 2016.

Kaieda, M.; Samukawa, T.; Kondo, A.; Fukunda, H. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent free system. J. Biosci. Bioeng., v. 91, p. 12-15, 2001.

Kaieda, M.; Samukawa, T.; Matsumoto, T.; Ban, K.; Kondo, A.; Shimada, Y.; Noda, H.; Nomoto, F.; Ohtsuka, K.; Izumoto, E.; Fukuda, H. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Journal of Bioscience and Bioengineering, v. 88, no. 6, p. 627-631, 1999.

Kausch, A. P.; Hague, J.; Oliver, M.; Watrud, L. S.; Mallory-Smith, C.; Meier, V.; Stewart Jr., C. N. Gene flow in genetically engineered perennial grasses: lessons for modification of dedicated bioenergy crops. In: Mascia, P. N.; Scheffran, J.; Widholm, J. M. (Eds.). Plant biotechnology for sustainable production of energy and co-products. Berlin: Springer-Verlag, 2010. (Biotechnology in Agriculture and Forestry, 66). Available from: <http://bioenergycenter.org/besc/publications/kausch_gene_flow.pdf>. Accessed in: Feb. 18, 2016.

King, J. W.; Holiday, R. L.; List, G. R. Hydrolysis of soyabean oil in a subcritical water flow reactor. Green Chemistry, v. 1, p. 261-264, 1999. Available from: <http://pearl1.lanl.gov/external/c-cde/scf/pubs/king/137_hydrolosis_of_soybean_oil.pdf>. Accessed in: Feb. 18, 2016.

Klingenfeld, D. Corn stover as a bioenergy feedstock: identifying and overcoming barriers for corn stover harvest, storage, and transport. Washington, DC: National Commission on Energy Policy, 2008.

Körbitz, W.; Friedrich, St.; Waginger E.; Wörgetter, M. Worldwide review on biodiesel production. Wieselburg, Austria: IEA Bioenergy Task 39, Subtask "Biodiesel", 2003. Available from: <http://task39.sites.olt.ubc.ca/files/2013/05/Korbitz-et-al-2003-Worldwide-Review-on-Biodiesel-Production-2003.pdf>. Accessed in: Feb. 18, 2016.

Kulkarni, P. S.; Sharanappa, G.; Ramesh, M. R. Mahua (Madhuca indica) as a source of biodiesel in India. International Journal of Scientific & Engineering Research, v. 4, no. 7, 2013. Available from: <http://www.ijser.org/paper/MAHUA-MADHUCA-INDICA-AS-A-SOURCE-OF-BIODIESEL-IN-INDIA.html>. Accessed in: Feb. 18, 2016.

Leong, S.; Tan, G.; Hao, O. S.; Lim, M. What is Algae Biofuel? In: Leong, S.; Tan, G.; Hao, O. S.; Lim, M. Oil of the future algae? 2011. Available from: <http://www2.hci.edu.sg/y11hci0149/Website/algae.html>. Accessed in: Feb. 18, 2016.

Liaquat, A. M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Hazrat, M. A.; Shahabuddin, M.; Mofijur, M. Application of blend fuels in a diesel engine. Energy Procedia, v. 14, p. 1124-1133, 2012. Available from: <http://umexpert.um.edu.my/file/publication/00006641_78884.pdf>. Accessed in: Feb. 18, 2016.

Lopes, D. C.; Steidle Neto, A. J. Potential crops for biodiesel production in Brazil: a review. World Journal of Agricultural Sciences, v. 7, no. 2, p. 206-217, 2011. Available from: <http://www.idosi.org/wjas/wjas7(2)/17.pdf>. Accessed in: Feb. 18, 2016.

Mazzocchia, C.; Kaddouri, A.; Modica, G.; Nannicini, R. Fast synthesis of biodiesel from triglycerides in presence of microwaves. In: Willert-Porada, M. Advances in microwave and radio frequency processing. Berlin: Springer, 2006. p. 370-376. (Report from the 8th International Conference on Microwave and High Frequency Heating held in Bayreuth, Germany, September 3-7, 2001. http://dx.doi.org/10.1007/978-3-540-32944-2

McKendry, P. Energy production from biomass (Part 1): overview of biomass. Bioresource Technology, v. 83, no. 1, p. 37-46, 2002. Available from: <http://faculty.washington.edu/stevehar/Biomass-Overview.pdf>. Accessed in: Feb. 18, 2016.

Meher, L. C.; Vidya Sagar, D.; Naik, S. N. Technical aspects of biodiesel production by transesterification: a review. Renewable and Sustainable Energy Reviews, v. 10, no. 3, p. 248-268, 2004. Available from: <http://eprint.iitd.ac.in/bitstream/2074/1497/1/mehertec2006.pdf>. Accessed in: Feb. 18, 2016.

Mehra, K. S.; Shah, M. P.; Singh, S. Use of non-edible vegetable oils as fuel for diesel engine: a review. International Journal for Research in Applied Science and Engineering Technology, v. 2, no. 3, p. 6-11, 2014. Available from: <http://www.ijraset.com/fileserve.php?FID=693>. Accessed in: Feb. 18, 2016.

Min, B.; Lim, J.; Ko, S.; Lee, K. G.; Lee, S. H.; Lee, S. Environmentally friendly preparation of pectins from agricultural by-products and their structural/rheological characterization. Bioresource Technology, v. 102, p. 3855-3860, 2011. http://dx.doi.org/10.1016/j.biortech.2010.12.019

Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol., v. 11, no. 3, p. 266-277, 2008.

Niju, S.; Meera Sheriffa Begum, K. M.; Anantharaman N. Enhancement of biodiesel synthesis over highly active CaO derived from natural white bivalve clam shell. Arabian Journal of Chemistry, in press, 2014. http://dx.doi.org/10.1016/j.arabjc.2014.06.006

Nyachaka, C. J.; Yawas, D. S.; Pam, G. Y. Production and performance evaluation of bioethanol fuel from groundnuts shell waste. American Journal of Engineering Research, v. 2, no. 12, p. 303-312, 2013. Available from: <http://www.ajer.org/papers/v2(12)/ZH212303312.pdf>. Accessed in: Feb. 18, 2016.

Padhi, S. K.; Singh, R. K. Non-edible oils as the potential source for the production of biodiesel in India: a review. J. Chem. Pharm. Res., v. 3, no. 2, p. 39-49, 2011. Available from: <http://jocpr.com/vol3-iss2-2011/JCPR-2011-3-2-39-49.pdf>. Accessed in: Feb. 18, 2016.

Pushparaj T.; Ramabalan, S. Green fuel design for diesel engine, combustion, performance and emission analysis. Procedia Engineering, v. 64, p. 701-709, 2013. http://dx.doi.org/10.1016/j.proeng.2013.09.145

Quitain, A. T.; Katoh, S.; Goto, M. Microwave-assisted synthesis of biofuels. In: Bernardes, M. A. S. (ed.). Biofuel production-recent developments and prospects. Rijeka, Croatia: InTech, 2011. p. 415-436. Available from: <http://cdn.intechopen.com/pdfs-wm/20069.pdf>. Accessed in: Feb. 18, 2016.

Refaat, A. A.; El Sheltawy, S. T.; Sadek, K. U. Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. International Journal of Environmental Science & Technology, v. 5, no. 3, p. 315-322, 2008. http://dx.doi.org/10.1007/BF03326026

Robson, P.; Jensen, E.; Hawkins, S.; White, S. R.; Kenobi, K.; Clifton-Brown, J.; Donnison, I.; Farrar, K. Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. Journal of Experimental Botany, v. 64, no. 14, p. 4143-4155, 2013. http://dx.doi.org/10.1093/jxb/ert225

Rosillo-Calle, F.; Pelkmans, L.; Walter, A. A global overview of vegetable oils, with reference to biodiesel: a report for the IEA Bioenergy Task 40. London: Imperial College, 2009. Available from: <http://www.bioenergytrade.org/downloads/vegetableoilstudyfinaljune18.pdf>. Accessed in: Feb. 18, 2016.

Roy, I.; Gupta, M. N. Applications of microwaves in biological sciences. Current Science, v. 85, no. 12, p. 1685-1693, 2003. Available from: <http://www.iisc.ernet.in/currsci/dec252003/1685.pdf>. Accessed in: Feb. 18, 2016.

Saifullah, A. Z. A.; Karim, Md. A.; Ahmad-Yazid, A. Microalgae: an alternative source of renewable energy. American Journal of Engineering Research, v. 3, no. 3, p. 330-338, 2014. Available from: <http://www.ajer.org/papers/v3(3)/ZQ33330338.pdf>. Accessed in: Feb. 18, 2016.

Saka, S.; Kusdiana, D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, v. 80, no. 2, p. 225-231, 2001.

Sandanasamy, J.; Nour, A. H.; Tajuddin, S. N.; Nour, A. Fatty acid composition and antibacterial activity of neem (Azadirachta indica) seed oil. The Open Conference Proceedings Journal, v. 4, Suppl. 2 M11, p. 43-48, 2013. Available from: <http://benthamopen.com/contents/pdf/TOPROCJ/TOPROCJ-4-2-43.pdf>. Accessed in: Feb. 18, 2016.

Sathya, T.; Manivannan, A. Biodiesel production from neem oil using two step transesterification. International Journal of Engineering Research and Applications, v. 3, no. 3, p. 488-492, 2013. Available from: <http://www.ijera.com/papers/Vol3_issue3/CD33488492.pdf>. Accessed in: Feb. 18, 2016.

Sattler, S. E.; Funnell-Harris, D. L. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens. Front. Plant Sci., v. 4, article 70, 2013. Available from: <http://journal.frontiersin.org/article/10.3389/fpls.2013.00070/full>. Accessed in: Feb. 18, 2016.

Sembiring, M.; Yoes, C. K. Fuel price hike and Indonesia's energy insecurity. Singapore: S. Rajaratnam School of International Studies, 2013. (RSIS Commentaries No. 128/2013, 11 July 2013). Available from: <http://econpapers.repec.org/scripts/redir.pf?u=http://www.esocialsciences.org/Download/repecDownload.aspx? fname=A2013726172336_20.pdf&fcategory=Articles&AId=5394&fref=repec;h=repec:ess:wpaper:id:5394>. Accessed in: Feb. 18, 2016.

Shah, S.; Sharma, S.; Gupta, M. N. Enzymatic transesterification for biodiesel production. Indian Journal of Biochemistry & Biophysics, v. 40, p. 392-399, 2003. Available from: <http://nopr.niscair.res.in/bitstream/123456789/3816/1/IBB 40(6) 392-399.pdf>. Accessed in: Feb. 18, 2016.

Shikha, K.; Rita, C. Y. Biodiesel production from non-edible-oils: a review. Journal of Chemical & Pharmaceutical Research, v. 4, no. 9, p. 4219-4230, 2012. Available from: <http://jocpr.com/vol4-iss9-2012/JCPR-2012-4-9-4219-4230.pdf>. Accessed in: Feb. 18, 2016.

Shouliang, C.; Renvoize, S. A. 188. MISCANTHUS Andersson, Öfvers. Kongl. Vete nsk.-Akad. Förh. 12: 165. 1855. Flora of China, v. 22, p. 581-583, 2006. Available from: <http://flora.huh.harvard.edu/china/PDF/PDF22/Miscanthus.pdf>. Accessed in: Feb. 18, 2016.

Singh, S.; Jain, M.; Pal, A. Use of biodiesel in CI engines: a review'. International Journal of Innovative Research in Science, Engineering and Technology, v. 2, no. 6, p. 2465-2469, 2013. Available from: <http://www.ijirset.com/upload/june/21A_Use of Biodiesel.pdf>. Accessed in: Feb. 18, 2016.

Skye, J. Advantages and disadvantages of biofuels. Green living-alternative fuel. Burlingame, CA: LoveToKnow, 2012. Available from: <http://greenliving.lovetoknow.com/Advantages_and_Disadvantages_of_Biofuels>. Accessed in: Feb. 18, 2016.

Srivastava, A.; Prasad, R. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, v. 4, no. 2, p. 111-133, 2000.

Sticklen, M. B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics, v. 9, p. 433-443, 2008. Available from: <https://www.tamu.edu/faculty/tpd8/BICH407/cellwalleng.pdf>. Accessed in: Feb. 18, 2016.

Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev., v. 2, p. 371-390, 2003. http://dx.doi.org/10.1023/B:PHYT.0000045487.02836.32

Uppangala, N. Advantages and disadvantages of biofuels. Biotech Articles, Environmental Biotechnology. 2010. Available from: <http://www.biotecharticles.com/Environmental-Biotechnology-Article/Advantages-and-Disadvantages-of-Biofuels-163.html>. Accessed in: Feb. 18, 2016.

van der Weijde, T.; Alvim Kamei, C. L.; Torres, A. F.; Vermerris, W.; Dolstra, O.; Visser, R. G.; Trindade, L. M. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci., v. 4, article 107, 2013. http://dx.doi.org/10.3389/fpls.2013.00107

Vanholme, R.; Demedts. B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol., v. 153, no. 3, p. 895 905, 2010. http://dx.doi.org/10.1104/pp.110.155119

Watanabe, Y.; Shimada, Y.; Sugihara, A., Noda; H., Fukuda, Tominaga, Y. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of Oil & Fat Industries, v. 77, no. 4, p. 355-360, 2000. Available from: <http://lib3.dss.go.th/fulltext/Journal/J.AOCS/J.AOCS/2000/no.4/apr2000vol77,no4,p355-360.pdf>. Accessed in: Feb. 18, 2016.

Weng, J.-K.; Li, X.; Bonawitz, N. D.; Chapple, C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol., v. 19, no. 2, p. 166-172, 2008. Available from: <https://www.tamu.edu/faculty/tpd8/BICH407/sdarticle1.pdf>. Accessed in: Feb. 18, 2016.

Wong, Y. C.; Sanggari, V. Bioethanol production from sugarcane bagasse using fermentation process. Orient J. Chem., v. 30, no. 2, p. 507-513, 2014. Available from: <https://http://www.orientjchem.org/pdf/vol30no2/OJCV030I02P507-513.pdf>. Accessed in: Feb. 18, 2016.

Xiao, C.; Anderson, C. T. Roles of pectin in biomass yield and processing for biofuels. Front. Plant Sci., v. 4, Article 67, p. 1-7, 2013. http://dx.doi.org/10.3389/fpls.2013.00067

Yuan, J. S.; Tiller, K. H.; Al-Ahmad, H.; Stewart, N. R.; Stewart Jr., C. N. Plants to power: bioenergy to fuel the future. Trends in Plant Science, v. 13, no. 8, p. 421-429, 2008.

Zych, D. The viability of corn cobs as a bioenergy feedstock. University of Minnesota, 2008. Available from: <http://renewables.morris.umn.edu/biomass/documents/Zych-TheViabilityOfCornCobsAsABioenergyFeedstock.pdf>. Accessed in: Feb. 18, 2016.