Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 2, n. 4 (2015) Mukherjee

 

Vol. 2, No. 4, p. 321-331 - Dec. 31, 2015

 

A report on salinity-governance of auxospore size in euryhaline diatoms of a well mixed estuary on North-Eastern coastal Bay of Bengal



Abhishek Mukherjee, Sabyasachi Chakraborty, Subhajit Das, Rupam Mondal, Sucheta Basu, Sandeep Thakur and Tarun Kumar De

Abstract
A three yearlong study was performed on the well mixed waters of the Hooghly Estuary on the North-Eastern coast of Bay of Bengal that revealed the significant effect of salinity towards the induction and governance of auxospores and their sizes in euryhaline centric and raphid pennate diatoms. The diatom species were chosen randomly (also due to their ubiquitous nature in the study area) in order to observe the effect of salinity in an unrestrictive manner [viz. Coscinodiscus radiatus Ehrenberg, Coscinodiscus concinnus W. Smith, Coscinodiscus lineatus Ehrenberg, Coscinodiscus excentricus Ehrenberg, Chaetoceros danicus Cleve, Chaetoceros lorenzianus Grunow, Chaetoceros decipiens Cleve, Chaetoceros minimus (Levander) D. Marino, G. Giuffre, M. Montresor & A. Zingone, Pleurosigma formosum W. Smith and Nitzschia sigmoidea (Nitzsch)]. Correlation (r-values at 5% level of significance) values between salinity and auxospore size revealed that lower salinity was conducive for larger auxospore (-0.7391 to -0.9282) production in case of all the species (total ten) studied upon. Nutrient parameters were also found to impart significant influences on auxospore size but not as prominent as salinity. Large auxospore was found to be the prerequisite to greater biovolume and vice versa, pointing to lower salinity regimes of a well mixed estuary favorable for sexual reproduction in euryhaline diatoms.


Keywords
Diatoms, Auxospore, Salinity, Biovolume, Hooghly Estuary.

Full text
PDF

References
Al-Kandari, M.; Al-Yamani, F. Y.; Al-Rifaie K. Marine phytoplankton atlas of Kuwait's Waters. Kuwait: Kuwait Institute for Scientific Research, 2009.

Biswas, H.; Mukhopadhyay, S. K.; De, T. K.; Sen, S.; Jana, T. K. Biogenic controls on the air-water carbon dioxide exchange in the Sundarban Mangrove environment, Northeast coast of Bay of Bengal, India. Limnol. Oceanogr., v. 49, p. 95-101, 2004.

Crawford, R. M. The role of sex in the sedimentation of a marine diatom bloom. Limnol. Oceanogr., v. 40, p. 200-204, 1974.

Cumming, B. F.; Smol, J. P. Diatoms and their relationship to salinity and other limnological characteristics from 65 Cariboo/Chilcotin Region (British Columbia, Canada) Lakes. Hydrobiologia, v. 269-270, p. 179-196, 1993.

Desikachary, T. V. Atlas of diatoms. Madras: Madras Science Foundation, 1986-1989.

Fritz, S. C. Twentieth-century salinity and water-level fluctuations in Devils Lake, North Dakota: a test of a diatom-based transfer function. Limnol. Oceanogr., v. 35, n. 8, p. 1771-1781, 1990.

Fritz, S. C.; Juggins, S.; Battarbee, R. W.; Engstrom, D. R. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, v. 352, p. 706-708, 1991.

Grasshoff, K.; Erhardt, M; Kremling, K. Methods of seawater analysis. Weinmeim: Verlag Chemie, 1983.

Hasle, G. R.; Syvertsen, E. R. Marine diatoms. In: Tomas, C. R. (Ed.). Identifying marine phytoplankton. London: Academic Press, 1994. p. 5-385.

Juggins, S. Diatoms in the Thames Estuary, England: ecology, palaeoecology, and salinity transfer function. Biblioth. Diatomol., v. 25, p. 1-216, 1992.

Kaczmarska, I.; Bates, S. S.; Ehrman, J. M.; Leger, C. Fine structure of the gamete, auxospore and initial cell in the pennate diatom Pseudonitzschia multiseries (Bacillariophyta). Nova Hedwig, v. 71, n. 3-4, p. 337357, 2000.

Kaczmarska, I.; Ehrman, J. M.; Bates, S. S. A review of auxospore structure, ontogeny and diatom phylogeny. In: Proceedings of the 16th International Diatom Symposium, Athens: University of Greece, 2001.

Mukherjee, A.; Das, S.; Chakraborty, S; De, T. K. Study on mangrove associated estuarine waters of Northeastern Bay of Bengal reveals potential diatom indicators of dissolved inorganic compounds. Brazilian Jounal of Biological Sciences, v. 2, n. 3, p. 155-168, 2015.

Mukhopadhyay, S. K.; Biswas, H.; De, T. K.; Jana, T. K. Fluxes of nutrients from the tropical River Hooghly at the land-ocean boundary of Sundarban, NE Coast of Bay of Bengal, India. J. Mar. Sys., v. 62, p. 9-21, 2006.

Round, F. E. The diatom flora of a salt marsh on the River Dee. New Phytol., v. 59, n. 3, p. 332-348, 1960.

Round, E. F.; Crawford, R. M. The lines of evolution of the Bacillariophyta. I. Origin. Proc. R. Soc. Lond. B., v. 211, n. 1183, p. 237-260, 1981.

Ryves, D. B.; Clarke, A. L.; Appleby, P. G. Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Can. J. Fish Aquat. Sci., v. 61, p. 1988-2006, 2004.

Saunders, K. M. A diatom dataset and diatom-salinity inference model for Southeast Australian estuaries and coastal lakes. J. Paleolimnol., v. 46, n. 4, p. 525-542, 2010.

Strickland, J. D. H.; Parsons T. R. A practical handbook of seawater analysis. 2. ed. Ottawa: Fish Res. Board, 1972.

Sullivan, M. J.; Currin, C. A. Community structure and functional dynamics of benthic microalgae in salt marshes. In: Weinstein, M.; Kreeger, D. A. (Ed.). Concepts and controversies in tidal marsh ecology. Dordrecht: Kluwer Academic Publishers, 2000. v. 2E. p. 81-106.

Trobajo, R.; Quintana, X. D.; Sabater S. Factors affecting the periphytic diatom community in Mediterranean coastal wetlands (Empordà Wetlands, NE Spain). Arch. Hydrobiol., v. 160, p. 375-399, 2004.

Underwood, G. J. C. Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diatom Res., v. 9, p. 451-472, 1994.

von Stosch, H. A. On auxospore envelopes in diatoms. Bacillaria, v. 5, p. 127-156, 1982.