Brazilian Journal of Biological Sciences (ISSN 2358-2731)



Home Archive v. 2, n. 4 (2015) Hernandez

 

Vol. 2, No. 4, p. 179-192 - Dec. 31, 2015

 

Origins of life before the cell: echos from the past with broad implications in our future



Johan Sebastián Hernández, José Henry Osorio and Jorge Enrique Pérez

Abstract
The following pages refers to the origin of life, but the discussion focuses far beyond finding the place where it probably started, and moves toward some intriguing questions and some of its broad implications for evolution itself. Can life flourish in all its complexity from a single proto-organism model that thrive thanks to natural selection at an individual level? Or, is there any implicit constraint in the mechanisms that drives evolution in the first steps of precelular life to allow community-based, collaborative abiogenic systems that differ from cellular life as we know it? As we will discuss here, it seems pertinent to expand some evolutionary concepts that seems to reach the limits of the discipline, and can be helpful to link the abiogenic world where life probably emerge, and the Darwinian cellular world ruled by the natural selection. With some of these questions in mind, we are obliged to at least consider the implications of this answers for the future exploration of the space, particularly within the field of applied astrobiology, a discipline that will have to tackle the problem of how a minimal viable community of microorganisms or precelullar forms, can thrive and cross the Darwinian threshold that allow life to take over a planet, by creating a Biosphere. A key question for the future of life beyond the boundaries of our planet.


Keywords
Evolution, Origin, Life, Cell, Environment, History.

Full text
PDF

References
Bernhardt, H. S. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct, v. 7, 2012. Available from: <http://www.biology-direct.com/content/7/1/23>. Accessed in: Aug. 24, 2015.

Butler, T.; Goldenfeld, N.; Mathew, D.; Luthey-Schulten, Z. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Physical Review E: Statistical, nonlinear, and soft matter physics, v. 79, n. 6, pt. 1, 060901, 2009. Available from: <http://journals.aps.org/pre/pdf/10.1103/PhysRevE.79.060901>. Accessed in: Aug. 24, 2015.

Cavalier-Smith, T. Cell evolution and Earth history: stasis and revolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci., v. 361, n. 1470, p. 969-1006, 2006.

Cavalier-Smith, T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc. Biol. Sci., v. 273, n. 1596, p. 1943-1952, 2006.

Chiarabelli, C.; Stano, P.; Anella, F.; Carrara, P.; Luisi, P. L. Approaches to chemical synthetic biology. FEBS Lett., v. 586, n. 15, p. 2138-2145, 2012. Available from: <http://ac.els-cdn.com/S0014579312000348/1-s2.0-S0014579312000348-main.pdf?_tid=ad0a99f0-4b54-11e5-ae63-00000aacb35f&acdnat=1440526455_61f1da53a46a80d72fb604b8927a5c45>. Accessed in: Aug. 24, 2015.

Crick, F. H. The origin of the genetic code. J. Mol. Biol., v. 38, n. 3, p. 367-379, 1968.

Darwin, C. El origen de las especies. 6. ed. Madrid: Editorial EDAF, 2010.

David, L. NASA's Mars Rover Curiosity had planetary protection slipup. Scientific American, 2011. Available from: <http://www.space.com/13783-nasa-msl-curiosity-mars-rover-planetary-protection.html>. Accessed in: Aug. 24, 2015.

Davis, B. Molecular evolution before the origin of species. Prog. Biophys. Mol. Biol., v. 79, p. 77-133, 2002.

Dawkins, R. The selfish gene. London: Oxford University Press, 1976.

Deamer, D. A giant step towards artificial life? Trends Biotechnol., v. 23, n. 7, p. 336-338, 2005.

Deamer, D. W.; Pashley, R. M. Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig. Life Evol. Biosph., v. 19, n. 1, p. 21-38, 1989.

Di Giulio, M. An extension of the coevolution theory of the origin of the genetic code. Biol. Direct, v. 3, p. 37, 2008. Available from: <http://www.biologydirect.com/content/pdf/1745-6150-7-23.pdf>. Accessed in: Aug. 24, 2015.

Di Giulio, M. On the origin of the transfer RNA molecule. J. Theor. Biol., v. 159, n. 2, p. 199-214, 1992.

Di Giulio, M. Reflections on the origin of the genetic code: a hypothesis. J. Theor. Biol., v. 191, n. 2, p. 191-196, 1998.

Di Giulio, M. The coevolution theory of the origin of the genetic code. Physics of Life Reviews, v. 1, p. 128-137, 2004.

Di Giulio, M. The origin of the genetic code: theories and their relationships, a review. Biosystems, v. 80, n. 2, p. 175-184, 2005.

Doolittle, R. F. Searching for the common ancestor. Res. Microbiol., v. 151, n. 2, p. 85-89, 2000.

Egel, R.; Lankenau, D.; Mulkidjanian, A. Origins of life: the primal self-organization. Berlin, Heidelberg: Springer-Verlag, 2011.

Egel, R. Primal eukaryogenesis: on the communal nature of pecellular states, ancestral to modern life. Life, v. 2, p. 170-212, 2012.

Ellington A. D.; Khrapov, M.; Shaw, C. A. The scene of a frozen accident. RNA, v. 6, n. 4, p. 485-498, 2000.

Gibson, D. G.; Glass, J. I.; Lartigue, C.; Noskov, V. N.; Chuang, R.-Y.; Algire, M. A.; Benders, G. A.; Montague, M. G.; Ma, L.; Moodie, M. M.; Merryman, C.; Vashee, S.; Krishnakumar, R.; Assad-Garcia, N.; Andrews-Pfannkoch, C.; Denisova, E. A.; Young, L.; Qi, Z.-Q.; Segall-Shapiro, T. H.; Calvey, C. H.; Parmar, P. P.; Hutchison III, C. A.; Smith, H. O.; Venter, J. C. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, v. 329, n. 5987, p. 52-56, 2010. Available from: <http://www.sciencemag.org/content/329/5987/52.full.pdf>. Accessed in: Aug. 24, 2015.

Gilbert, S. F.; Sapp, J.; Tauber, A. I. A symbiotic view of life: we have never been individuals. Q. Rev. Biol., v. 87, n. 4, p. 325-341, 2012.

Gogarten, J. P.; Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol., v. 3, n. 9, p. 679-687, 2005.

Goldenfeld, N.; Woese, C. Biology's next revolution. Nature, v. 445, n. 7126, p. 369, 2007.

Goldstein, B.; Blaxter, M. Tardigrades. Curr. Biol., v. 12, n. 14, p. R475, 2002. Available from: <http://ac.els-cdn.com/S0960982202009594/1-s2.0-S0960982202009594-main.pdf?_tid=41524390-4b61-11e5-9c8f-00000aacb360&acdnat=1440531858_2b5335cf7d6fc378f103c02222999848>. Accessed in: Aug. 24, 2015.

Gould, S. La estructura de la teoría de la evolución. 2. ed. Barcelona: Tusquets, 2004.

Griffiths, G. Cell evolution and the problem of membrane topology. Nat. Rev. Mol. Cell Biol., v. 8, n. 12, p. 1018-1024, 2007.

Hanczyc, M. M.; Szostak, J. W. Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol., v. 8, n. 6, p. 660-664, 2004.

Jain, R; Rivera, M. C.; Moore, J. E.; Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol., v. 20, n. 10, p. 1598-1602, 2003. Available from: <http://mbe.oxfordjournals.org/content/20/10/1598.full.pdf+html>. Accessed in: Aug. 24, 2015.

Jönsson, K. I.; Rabbow, E.; Schill, R. O.; Harms-Ringdahl, M.; Rettberg, P. Tardigrades survive exposure to space in low Earth orbit. Curr. Biol., v. 18, n. 17, p. R729-R731, 2008. Available from: <http://ac.els-cdn.com/S0960982208008051/1-s2.0-S0960982208008051-main.pdf?_tid=3846773a-4b61-11e5-a7db-00000aacb35d&acdnat=1440531843_07b2c0628892e58e1a86b5c834dbc398>. Accessed in: Aug. 24, 2015.

Karp, G. Cell and Molecular Biology. Concepts and experiments. 6. ed. New Jersey: John Wiley & Sons, 2010.

Kindermann, M.; Stahl, I.; Reimold, M.; Pankau, W. M.; von Kiedrowski, G. Systems chemistry: kinetic and computational analysis of a nearly exponential organic replicator. Angewandte Chemie, v. 117, v. 41, p. 6908-6913, 2005. Avalaible from: <http://onlinelibrary.wiley.com/doi/10.1002/ange.200501527/pdf>. Accessed in: Aug. 24, 2015.

Kobayashi K.; Tsuchiya, M.; Oshima, T.; Yanagawa, H. Abiotic synthesis of amino acids and imidazole by proton irradiation of simulated primitive earth atmospheres. Orig. Life Evol. Biosph., v. 20, p. 99-109, 1990. Available from: <http://link.springer.com/article/10.1007%2FBF01808270#page-1>. Accessed in: Aug. 24, 2015.

Koonin, E. V.; Novozhilov, A. S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life, v. 61, n. 2, p. 99-111, 2009.

Koonin, E. V.; Senkevich, T. G.; Dolja, V. V. The ancient virus World and evolution of cells. Biology Direct, v. 1, 2006. Available from: <http://www.biologydirect.com/content/pdf/1745-6150-1-29.pdf>. Accessed in: Aug. 24, 2015.

Kuhn, T. S. La estructura de las revoluciones científicas. México, D.F.: Fondo de Cultura Económica, 1971.

Kvenvolden, K.; Lawless, J.; Pering, K.; Peterson, E.; Flores, J.; Ponnamperuma, C.; Kaplan, I. R.; Moore, C. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature, v. 228, n. 5275, p. 923-926, 1970.

Laurin, M.; Everett, M. L.; Parker, W. The cecal appendix: one more immune component with a function disturbed by post-industrial culture. The Anatomical Record, v. 294, n. 4, p. 567-579, 2011. Available from: <http://onlinelibrary.wiley.com/doi/10.1002/ar.21357/pdf>. Accessed in: Aug. 24, 2015.

Lee, D. H.; Severin, K.; Yokobayashi, Y.; Ghadiri, M. R. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature, v. 390, n. 6660, p. 591-594, 1997. Available from: <http://www.nature.com/nature/journal/v390/n6660/full/390591a0.html>. Accessed in: Aug. 24, 2015.

Lincoln, T. A.; Joyce, G. F. Self-sustained replication of an RNA enzyme. Science, v. 323, 5918, p. 1229-1232, 2009.

Luisi, P. La vida emergente. De los origenes químicos a la biología sintética. Barcelona: Tusquets, 2006.

Martin W.; Russell, M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci., v. 358, n. 1429, p. 59-83, 2003.

Martin, W.; Baross, J.; Kelley, D.; Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol., v. 6, n. 11, p. 805-814, 2008.

Matson, J. Can hitchhiking Earth microbes thrive on Mars? Scientific American, 2013. Available from: <http://blogs.scientificamerican.com/observations/can-hitchhiking-earth-microbes-thrive-on-mars/>. Accessed in: Aug. 24, 2015.

Melendez-Hevia, E.; Waddell, T. G.; Cascante, M. The puzzle of the Krebs Citric Acid Cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. J. Mol. Evol., v. 43, n. 3, p. 293-303, 1996.

Moura, G. R.; Paredes, J. A.; Santos, M. A. Development of the genetic code: insights from a fungal codon reassignment. FEBS Lett., v. 584, n. 2, p. 334-341, 2010.

Moura, G. R.; Carreto, L. C.; Santos, M. A. Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity. Curr. Opin. Microbiol., v. 12, n. 6, p. 631-637, 2009.

Mulkidjanian, A. Y.; Galperin, M. Y. On the abundance of zinc in the evolutionarily old protein domains. Proc. Natl. Acad. Sci. USA, v. 107, n. 36, p. E137, 2010.

Munévar, G. Philosophy of space exploration. Michigan, 2013. Available from: <http://philosophyofspaceexploration.blogspot.com/>. Accessed in: Aug. 24, 2015.

Murray, R. K.; Bender, D. A.; Botham, K. M.; Kennelly, P. J.; Rodwell, V. W.; Weil, P. A. Harper's illustrated biochemistry. 28. ed. New York: McGraw-Hill, 2009.

Nagaswamy, U.; Fox, G. E. RNA ligation and the origin of tRNA. Orig. Life Evol. Biosph., v. 33, n. 2, p. 199-209, 2003.

Nesvorny, D.; Janches, D.; Vokrouhlicky, D.; Pokorny, P.; Bottke, W. F.; Jenniskens, P. Dynamical model for the zodiacal cloud and sporadic meteors. Astrophysical Journal, v. 743, n. 2, p. 129-145, 2011. Available from: <http://arxiv.org/pdf/1109.2983v1.pdf>. Accessed in: Aug. 24, 2015.

Nicholson, W. L.; Krivushin, K.; Gilichinsky, D.; Schuerge, A. C. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc. Natl. Acad. Sci. USA, v. 110, n. 2, p. 666-671, 2013. Available from: <http://www.pnas.org/content/110/2/666.full.pdf+html>. Accessed in: Aug. 24, 2015.

Nowak, M. A.; Tarnita, C. E.; Wilson, E. O. The evolution of eusociality. Nature, v. 466, n. 7310, p. 1057-1062, 2010.

O'Malley, M. A.; Boucher, Y. Paradigm change in evolutionary microbiology. Stud. Hist. Philos. Biol. Biomed. Sci., v. 36, n. 1, p. 183-208, 2005.

Pross, A. Toward a general theory of evolution: Extending Darwinian theory to inanimate matter. Journal of Systems Chemistry, v. 2, n. 1, p. 1-14, 2011.

Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K. S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D. R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.-M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H. B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; MetaHIT Consortium; Bork, P.; Ehrlich, D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, v. 464, n. 7285, p. 59-65, 2010. Available from: <http://www.nature.com/nature/journal/v464/n7285/pdf/nature08821.pdf>. Accessed in: Aug. 24, 2015.

Rampelotto, P. Panspermia: a promising field of research. Astrobiology Science Conference, League City, Texas, Lunar and Planetary Institute, 2010. Available from: <http://www.lpi.usra.edu/meetings/abscicon2010/pdf/5224.pdf>. Accessed in: Aug. 24, 2015.

Rogers, J. A History of the Earth. Cambridge: Cambridge University Press, 1993.

Romano, A. H.; Conway, T. Evolution of carbohydrate metabolic pathways. Res. Microbiol., v. 147, n. 6-7, p. 448-455, 1996.

Rothschild, L. J.; Mancinelli, R. L. Life in extreme environments. Nature, v. 409, n. 6823, p. 1092-1101, 2001.

Schuerger, A. C.; Ulrich, R.; Berry, B. J.; Nicholson, W. L. Growth of Serratia liquefaciens under 7 mbar, 0 oC, and CO2 Enriched Anoxic Atmospheres. Astrobiology, v. 13, n. 2, p. 115-131, 2013. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582281/pdf/ast.2011.0811.pdf>. Accessed in: Aug. 24, 2015.

Sheliepin L.; Marín, R. Lejos del equilibrio: sinergética, autoorganización y teoría de catástrofes. Moscow: Editorial URSS, 2005.

Sievers, D.; von Kiedrowski, G. Self-replication of complementary nucleotide-based oligomers. Nature, v. 369, n. 6477, p. 221-224, 1994.

Slade, D.; Lindner, A. B.; Paul, G.; Radman, M. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell, v. 136, n. 6, p. 1044-1055, 2009. Available from: <http://ac.els-cdn.com/S009286740900066X/1-s2.0-S009286740900066X-main.pdf?_tid=1b0a95bc-5afb-11e5-a0b1-00000aacb35f&acdnat=1442247204_76301ccb95d82f5a56e6edd338683737>. Accessed in: Aug. 24, 2015.

Smith, E.; Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA, v. 101, n. 36, p. 13168-13173, 2004.

Smith, H. F.; Parker, W.; Kotzé, S. H.; Laurin, M. Multiple independent appearances of the cecal appendix in mammalian evolution and an investigation of related ecological and anatomical factors. C. R. Palevol., v. 12, p. 339-354, 2013. Available from: <http://ac.els-cdn.com/S1631068312001960/1-s2.0-S1631068312001960-main.pdf?_tid=872f2cf8-5afb-11e5-bed3-00000aacb360&acdnat=14422473 85_dcc7b7e689171c92f8971ef47f48077d>. Accessed in: Aug. 24, 2015.

Srinivasan, V.; Morowitz, H. J. The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol. Bull., v. 216, v. 2, p. 126-130, 2009.

Suttle, C. A. Viruses in the sea. Nature, v. 437, n. 7057, p. 356-361, 2005.

Szathmary, E. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet., v. 15, n. 6, p. 223-229, 1999.

Tamura K. Ribosome evolution: emergence of peptide synthesis machinery. J. Biosci., v. 36, n. 5, p. 921-928, 2011.

Vasas, V.; Fernando, C.; Santos, M.; Kauffman, S.; Szathmáry, E. Evolution before genes. Biology Direct, v. 7, 2012. Available from: <http://www.biologydirect.com/content/pdf/1745-6150-7-1.pdf>. Accessed in: Aug. 24, 2015.

Vetsigian K.; Woese, C.; Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA, v. 103, n. 28, p. 10696-10701, 2006.

Warmflash, D.; Weiss, B. Did Life Come from Another World? Scientific American, 2005. Available from: <http://www.scientificamerican.com/article/did-life-come-from-anothe/>. Accessed in: Aug. 24, 2015.

Weiss, K. M.; Buchanan, A.V. Is life law-like? Genetics, v. 188, n. 4, p. 761-771, 2011.

Weiss, K. M.; Buchanan, A. V. The cooperative genome: organisms as social contracts. Int. J. Dev. Biol., v. 53, n. 5-6, p. 753-763, 2009.

Wilson, E. La conquista social de la tierra. 1. ed. Barcelona: Debate, 2012.

Woese, C. The universal ancestor. Proc. Natl. Acad. Sci. USA, v. 95, n. 12, p. 6854-6859, 1998.

Woese, C. R. On the evolution of cells. Proc. Natl. Acad. Sci. USA, v. 99, n. 13, p. 8742-8747, 2002.

Wong, J. T. Coevolution theory of the genetic code at age thirty. Bioessays, v. 27, n. 4, p. 416-425, 2005.

Yao, S.; Ghosh, I.; Zutshi, R.; Chmielewski, J. Selective amplification by auto- and cross-catalysis in a replicating peptide system. Nature, v. 396, n. 6710, p. 447-450, 1998.

Yarus, M.; Widmann, J. J.; Knight, R. RNA-amino acid binding: a stereochemical era for the genetic code. J. Mol. Evol., v. 69, n. 5, p. 406-429, 2009. Available from: <https://mcdb.colorado.edu/files/yarus/JME_239_2009_9270_OnlinePDF.pdf>. Accessed in: Aug. 24, 2015.

Zahradka, K.; Slade, D.; Bailone, A.; Sommer, S.; Averbeck, D.; Petranovic, M.; Lindner, A. B.; Radman, M. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature, v. 443, n. 7111, p. 569-573, 2006.

Zimmer, C. Evolutionary roots. On the origin of life on Earth. Science, v. 323, n. 5911, p. 198-199, 2009.